The homogenization of diffusion-convection equations in non-periodic structures

The homogenization of diffusion-convection equations in non-periodic structures

We consider the homogenization of diffusion-convective problems with given divergence-free velocities innonperiodic structures defined by sequences of characteristic functions (the first sequence). The sequence of concentration(the second sequence) is uniformly bounded in the space of square-summable functions with square-summable derivativeswith respect to spatial variables. At the same time, the sequence of time-derivative of product of these concentrationson the characteristic functions, that define a nonperiodic structure, is bounded in the space of square-summablefunctions from time interval into the conjugated space of functions depending on spatial variables, with square-summablederivatives. We prove the strong compactness of the second sequences in the space of quadratically summable functionsand use this result to homogenize the corresponding boundary value problems that depend on a small parameter.

___

  • [1] Acerbi E, Chiad‘o V, Maso G, Percivale D. An extension theorem from connected sets and homogenization in general periodic domains. Nonlinear Analysis 1992; 5 (5): 481-496. doi: 10.1016/0362-546X(92)90015-7
  • [2] Adams RA. Sobolev spaces. New York, NY, USA: Academic Press, 1975.
  • [3] Aubin JP. Un théorème de compacité. Comptes rendus de lÁcadèmie des Sciences 1963; 256 (1): 5042-5044
  • [4] Bensoussan A, Lions J, Papanicolau G. Asymptotic Analysis for Periodic Structure. Amsterdam, Netherlands: North Holland Publishing Company, 1978.
  • [5] Chen X, Jungel A, Liu J. Note on Aubin-Lions-Dubinskii Lemmas. Acta Applicandae Mathematicae 2014; 133 (1): 33-43. doi: 10.1007/s10440-013-9858-8
  • [6] Jikov VV, Kozlov SM, Oleinik OA. Homogenization of differential operators and integral functionals. Berlin, Germany: Springer-Verlag, 1994.
  • [7] Kolmogorov AN, Fomin SV. Introductory real analysis. New York, NY, USA: Dover Publications, 1975.
  • [8] Ladyzhenskaya OA, Solonnikov VA, Uraltseva NN. Linear and Quasilinear Equations of Parabolic Type. Providence, RI, USA: American Mathematical Society, 1968.
  • [9] Lions JL. Quelques methodes de resolution des problemes aux limites nonlineaire. Paris, France: Dunod, 1969.
  • [10] Meirmanov A, Zimin R. Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation. Electronic Journal of Differential Equations 2011; 2011 (115): 1-11.
  • [11] Meirmanov A, Shmarev S. A compactness lemma of Aubin type and its application to a class of degenerate parabolic equations. Electronic Journal of Differential Equations 2014; 2014 (227): 1-13.
  • [12] Meirmanov A. Mathematical models for poroelastic flow. Paris, France: Atlantis Press, 2014.
  • [13] Mikhailov VP, Gushchin AK. Additional chapters of the course “Equations of Mathematical Physics”, Lecture courses REC, Issue 7, V.A. Steklov’s Mathematical Institute. Moscow, Russia: RAS, 2007.
  • [14] Nguetseng G. A general convergence result for a functional related to the theory of homogenization. SIAM Journal on Mathematical Analysis 1989; 20 (3): 608-623. doi:10.1137/0520043
  • [15] Rudin W. Principles of mathematical analysis. New York, NY, USA: McGraw-Hill, 1976.