The fundamental theorems of algebroid functions on annuli

An extension of Nevanlinna value distribution theory for algebroid functions on annuli is proposed. The main characteristics are one-parameter and possess the same properties as in the classical case. Analogs of the Cartan theorem, the first fundamental theorem, the second fundamental theorem, deficient values, and the uniqueness of algebroid functions on annuli are proved.

The fundamental theorems of algebroid functions on annuli

An extension of Nevanlinna value distribution theory for algebroid functions on annuli is proposed. The main characteristics are one-parameter and possess the same properties as in the classical case. Analogs of the Cartan theorem, the first fundamental theorem, the second fundamental theorem, deficient values, and the uniqueness of algebroid functions on annuli are proved.

___

  • T(r, W ) + T0(r, W ) < O(log[rT0(r, W )T0(r, W )]). (38) T0(r, W ) + T0(r, W ) < O(log[ R − r0 T0(r, W )T0(r, W )]). By Theorem 5 we know that (4.38) or (4.39) are not true. So it must be W (z)≡ W (z). ✷ Proof of Theorem 7 By Theorem 2 we have the conclusion of Theorem 7. ✷ Axler S. Harmonic functions from a complex analysis viewpoint. Amer Math Monthly 1986; 93: 246–258.
  • Khrystiyanyn AYa, Kondratyuk AA. On the Nevanlinna theory for meromorphic functions on annuli (I). Matem- atychni Studii 2005; 23: 19–30.
  • Khrystiyanyn AYa, Kondratyuk AA. On the Nevanlinna theory for meromorphic functions on annuli (II). Matem- atychni Studii 2005; 24: 57–68.
  • Hayman WK, Kennedy P. Subharmonic functions. London, UK: Academic Press, 1980.
  • Hayman WK. Meromorphic functions. Oxford, UK: Oxford University Press, 1964.
  • Yi H, Yang C. Uniqueness theory of meromorphic function. Beijing, China: Science Press, 1995.
  • Yi H. On the multiple values and uniqueness of algebroid functions. Engineering Math 1991; 8: 1–8.
  • Laine I. Nevanlinna theory and complex differential equations. Berlin, Germany: Walter de Gruyter, 1993.
  • Nevanlinna R. Eindeutige analytische Funktionen. Berlin and New York: Springer-Verlag, 1953.
  • Niino K, Ozawa M. Deficiencies of an entire algebroid function. Kodai Math 1970; 22: 98–113.
  • Zhang Q. Uniqueness of algebroid functions. Math Pract Theory 2013; 43: 183–187.
  • Rubel LA. Entire and meromorphic functions. New York, NY, USA: Springer, 1996.
  • Toda N. On algebroid functions. Sugaku 1972; 24: 200–209.
  • Tsuji M. Potential Theory in Modern Function Theory. Tokyo, Japan: Maruzen, 1959.
  • He Y. On the algebroid functions and their derivatives (I). Acta Mathematica Sinica 1965; 15: 281–295.
  • He Y. On the algebroid functions and their derivatives (II). Acta Mathematica Sinica 1965; 15: 500–510.
  • He Y. On the multiple values of algebroid functions. Acta Mathematica Sinica 1979; 22: 733–742.
  • He Y, Gao S. On algebroid functions taking the same values at the same points. Kodai Math 1986; 9: 256–265.
  • He Y, Xiao X. Algebroid functions and ordinary differential equations in the complex domain. Beijing, China: Science Press, 1988.
  • Xuan Z, Gao Z. Uniqueness theorems for algebroid functions. Complex Var Elliptic Equ 2006; 51: 701–712.