Subspace condition for Bernstein's lethargy theorem

Subspace condition for Bernstein's lethargy theorem

In this paper, we consider a condition on subspaces in order to improve bounds given in Bernstein s lethargy theorem for Banach spaces. Let d1 ≥ d2 ≥ . . . dn ≥ · · · > 0 be an infinite sequence of numbers converging to 0, and let Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · · ⊂ X be a sequence of closed nested subspaces in a Banach space X with the property that Y n ⊂ Yn+1 for all n ≥ 1. We prove that for any c ∈ (0, 1] there exists an element xc ∈ X such that cdn ≤ ρ(xc, Yn) ≤ min(4, a )c dn. Here, ρ(x, Yn) = inf{||x − y|| : y ∈ Yn}, a = sup i≥1 sup {qi} { a −3 ni+1−1 } where the sequence {an} is defined as: for all n ≥ 1, an = inf l≥n inf q∈⟨ql ,ql+1,... ⟩ ρ(q, Yl) ||q|| in which each point qn is taken from Yn+1 Yn , and satisfies inf n≥1 an > 0. The sequence {ni}i≥1 is given by n1 = 1; ni+1 = min { n ≥ 1 : dn a 2 n ≤ dni } , i ≥ 1

___

  • [1] Aksoy AG, Almira JM. On Shapiro’s lethargy theorem and some applications. Jaen J Approx 2014; 6: 87-116.
  • [2] Aksoy AG, Lewicki G. Bernstein lethargy theorem in Fr´echet spaces. J Approx Theory 2016; 209: 58-77.
  • [3] Aksoy AG, Lewicki G. Diagonal operators, s-numbers and Bernstein pairs. Note Mat 1999; 17: 209-216.
  • [4] Aksoy AG, Peng Q. On a theorem of S. N. Bernstein for Banach spaces. ArXiv: 1605.04592.
  • [5] Almira JM, del Toro N. Some remarks on negative results in approximation theory. Proceedings of the Fourth International Conference on Functional Analysis and Approximation Theory, Vol. I (Potenza 2000) Rend. Circ. Mat. Palermo (2) Suppl., 2002, no. 68, part I, pp. 245-256.
  • [6] Almira JM, Oikhberg T. Approximation schemes satisfying Shapiro’s theorem. J Approx Theory 2012; 5: 534-571.
  • [7] Bernstein SN. On the inverse problem in the theory of best approximation of continuous functions. Collected works (in Russian), Izd Akad Nauk, USSR 1954; vol II: 292-294.
  • [8] Borodin PA. On the existence of an element with given deviations from an expanding system of subspaces. Math Notes 2006; 80: 621-630 (Translated from Mathematicheskie Zametki).
  • [9] Cheney EW. Introduction to Approximation Theory. Providence, RI, USA: AMS Chelsea Publishing, 1998.
  • [10] Deutsch F, Hundal H. A generalization of Tyuriemskih’s lethargy theorem and some applications. Numer Func Anal Opt 2013; 34: 1033-1040.
  • [11] Konyagin SV. Deviation of elements of a Banach space from a system of subspaces. Proceedings of the Steklov Institute of Mathematics; 2014; 284 (1), pp. 204-207.
  • [12] Lewicki G. A theorem of Bernstein’s type for linear projections. Univ Iagellon Acta Math 1988; 27: 23-27.
  • [13] Ple´sniak W. Quasianalytic functions in the sense of Bernstein. Dissert Math 1977; 147: 1-70.
  • [14] Plichko A. Rate of decay of the Bernstein numbers. Zh Mat Fiz Anal Geom 2013; 9: 59-72.
  • [15] Shapiro HS. Some negative theorems of approximation theory. Michigan Math J 1964; 11: 211-217.
  • [16] Singer I. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Berlin, Germany: SpringerVerlag, 1970.
  • [17] Timan AF. The Theory of Approximating Functions of Real Variables. Oxford, UK: Macmillan, 1994.
  • [18] Tyuriemskih IS. On one problem of S. N. Bernstein. Scientific Proceedings of Kaliningrad State Pedagog. Inst.; 1967; 52: 123-129.