Some notes on nil-semicommutative rings

A ring R is defined to be nil-semicommutative if ab \in N(R) implies arb \in N(R) for a, b, r \in R, where N(R) stands for the set of nilpotents of R. Nil-semicommutative rings are generalization of NI rings. It is proved that (1) R is strongly regular if and only if R is von Neumann regular and nil-semicommutative; (2) Exchange nil-semicommutative rings are clean and have stable range 1; (3) If R is a nil-semicommutative right MC2 ring whose simple singular right modules are YJ-injective, then R is a reduced weakly regular ring; (4) Let R be a nil-semicommutative p-regular ring. Then R is an (S, 2)-ring if and only if Z/2 Z is not a homomorphic image of R.

Some notes on nil-semicommutative rings

A ring R is defined to be nil-semicommutative if ab \in N(R) implies arb \in N(R) for a, b, r \in R, where N(R) stands for the set of nilpotents of R. Nil-semicommutative rings are generalization of NI rings. It is proved that (1) R is strongly regular if and only if R is von Neumann regular and nil-semicommutative; (2) Exchange nil-semicommutative rings are clean and have stable range 1; (3) If R is a nil-semicommutative right MC2 ring whose simple singular right modules are YJ-injective, then R is a reduced weakly regular ring; (4) Let R be a nil-semicommutative p-regular ring. Then R is an (S, 2)-ring if and only if Z/2 Z is not a homomorphic image of R.

___

  • Antoine, R.: Nilpotent elements and Armendariz rings. J. Algebra 319, 3128-3140 (2008).
  • Badawi, A.: On abelian π −regular rings. Comm. Algebra 25(4), 1009–1021 (1997).
  • Chen, W. X.: On nil −semicommutative rings. Thai. J. Math. 9(1), 39–47 (2011).
  • Ehrlich, G.: Unit regular rings. Portugal. Math. 27, 209–212 (1968).
  • Henriksen, M.: Two classes of rings generated by their units. J. Algebra 31, 182–193 (1974).
  • Hwang, S. U., Jeon, Y. C., Park, K. C.: On N CI rings. Bull. Korean Math. Soc. 44(2), 215–223 (2007).
  • Kim, N. K., Lee, Y.: On right quasi-duo rings which are π −regular. Bull. Korean Math. Soc. 37, 217–227 (2000). Kim, N. K., Nam, S. B., Kim, J. Y.: On simple singular GP −injective modules. Comm. Algebra 27(5), 2087–2096 (1999).
  • Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent. J. Pure Appl. Algebra 195, 243–259 (2005). Li, L., Wang, L. M., Liu, Z. K.: On a generalization of semicommutative rings. Taiwane. J. Math. 11(5), 1359–1368, (2007).
  • Marks, G.: A taxonomy of 2 − primal rings. J. Algebra 266, 494–520 (2003).
  • Nicholson, W. K.: Strongly clean rings and Fitting , s Lemma. Comm. Algebra 27(8), 3583-3592 (1999).
  • Nicholson, W. K.: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229, 269–278 (1977).
  • Nicholson, W. K., Yousif., M. F.: Minijective rings. J. Algebra 187, 548–578 (1997).
  • Vaserstein, L. N.: Bass , s first stable range condition. J. Pure Appl. Algebra 34, 319-330 (1984).
  • Wei, J. C.: Certain rings whose simple singular modules are nil -injective. Turk. J. Math. 32, 393–408 (2008).
  • Wei, J. C., Chen, J. H.: nil −injective rings. Intern. Electr. Jour. Algebra 2, 1–21 (2007).
  • Wei, J. C., Li, L. B.: Quasi-normal rings. Comm. Algebra 38(5), 1855–1868 (2010).
  • Wei, J. C., Li, L. B.: Strongly DS rings, Southeast Asian Bull. Math. 33, 375–390 (2009).
  • Wei, J. C., Li, L. B.: Weakly normal rings. Turk. J. Math. 36, 47–57 (2012).
  • Wu, T. S., Chen, P.: On finitely generated projective modules and exchange rings. Algebra Colloq. 9(4), 433–444 (2002).
  • Yu, H. P.: Stable range one for exchange rings. J. Pure. Appl. Algebra 98, 105–109 (1995).
  • Yu, H. P.: On quasi-duo rings. Glasgow Math. J. 37, 21–31 (1995).