RT distance and weight distributions of Type 1 constacyclic codes of length $4p^s$ over $frac{F_{p^{mleft[uright]}}}{leftlangle u^arightrangle}$

RT distance and weight distributions of Type 1 constacyclic codes of length $4p^s$ over $frac{F_{p^{mleft[uright]}}}{leftlangle u^arightrangle}$

For any odd prime p such that pm ≡ 1 (mod 4) , the class of Λ -constacyclic codes of length 4ps over thefinite commutative chain ring R = Fpm [u] = F m + uF m + · · · + ua−1F m , for all units Λ of Rthat have the forma⟨ua⟩pppaΛ = Λ0 + uΛ1 +· · ·+ ua−1Λa−1 , where Λ0, Λ1, . . . , Λa−1 ∈ Fpm , Λ0 ̸= 0, Λ10 , is investigated. If the unit Λ is a square,each Λ -constacyclic code of length 4ps is expressed as a direct sum of a −λ -constacyclic code and a λ -constacyclic code of length 2ps . In the main case that the unit Λ is not a square, we show that any nonzero polynomial of degree < 4 over F m is invertible in the ambient ring Ra[x] and use it to prove that the ambient ring Ra[x] is a chain p⟨x4ps −Λ⟩⟨x4ps −Λ⟩ring with maximal ideal ⟨x4 − λ ⟩ , where λps = Λ . As an application, the number of codewords and the dual of eachλ -constacyclic code are provided. Furthermore, we get the Rosenbloom–Tsfasman (RT) distance and weight distributions of such codes. Using these results, the unique MDS code with respect to the RT distance is identified.

___

  • [1] Abualrub T, Oehmke R. On the generators of Z4 cyclic codes of length 2e . IEEE T Inform Theory 2003; 49: 2126-2133.
  • [2] Amarra MCV, Nemenzo FR. On (1 ? u) -cyclic codes over Fpk + uFpk . Applied Mathematics Letters 2008; 21: 1129-1133.
  • [3] Berlekamp ER. Algebraic Coding Theory, Revised 1984 Edition. Walnut Creek, CA, USA: Aegean Park Press, 1984.
  • [4] Berlekamp ER. Negacyclic codes for the Lee metric. In: Proceedings of the Conference on Combinatorial Mathematics and Its Application. Chapel Hill, NC, USA, 1968, pp. 298-316.
  • [5] Berman SD. Semisimple cyclic and Abelian codes. II. Kibernetika (Kiev) 1967; 3: 21-30 (in Russian).
  • [6] Blackford T. Cyclic codes over Z4 of oddly even length. Appl Discr Math 2003; 128: 27-46.
  • [7] Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2+uF2 . IEEE T Inform Theory 1999; 45: 1250-1255.
  • [8] Bonnecaze A, Udaya P. Decoding of cyclic codes over F2 + uF2 . IEEE T Inform Theory 1999; 45: 2148-2157.
  • [9] Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2+uF2 . IEEE T Inform Theory 1999; 45: 1250-1255.
  • [10] Calderbank AR, Hammons AR, Kumar PV, Sloane NJA, Solé P. A linear construction for certain Kerdock and Preparata codes. B Am Math Soc 1993; 29: 218-222.
  • [11] Castagnoli G, Massey JL, Schoeller PA, von Seemann N. On repeated-root cyclic codes. IEEE T Inform Theory 1991; 37: 337-342.
  • [12] Chen B, Dinh HQ, Liu H, Wang L. Constacyclic codes of length 2ps over Fpm + uFpm . Finite Fields and Their Applications 2016; 36: 108-130.
  • [13] Chen B, Lin L, Liu H. Matrix product codes with Rosenbloom-Tsfasma metric. Acta Math Sci 2013; 33B: 687-700.
  • [14] Dinh HQ. On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl 2008; 14: 22-40.
  • [15] Dinh HQ. Constacyclic codes of length 2s over Galois extension rings of F2 + uF2 . IEEE T Inform Theory 2009; 55: 1730-1740.
  • [16] Dinh HQ. Constacyclic codes of length ps over Fpm + uFpm . J Algebra 2010; 324: 940-950.
  • [17] Dinh HQ. Repeated-root constacyclic codes of length 2ps . Finite Fields Appl 2012; 18: 133-143.
  • [18] Dinh HQ. Structure of repeated-root constacyclic codes of length 3ps and their duals. Discrete Math 2013; 313: 983-991.
  • [19] Dinh HQ. Structure of repeated-root cyclic and negacyclic codes of length 6ps and their duals. AMS Contemporary Mathematics 2014; 339: 69-87.
  • [20] Dinh HQ, Dhompongsa S, Sriboonchitta S. Repeated-root constacyclic codes of prime power length over F pm[u] ⟨ua⟩ and their duals. Discrete Math 2016; 339: 1706-1715.
  • [21] Dinh HQ, Dhompongsa S, Sriboonchitta S. On constacyclic codes of length 4ps over Fpm + uFpm . Discrete Math 2017; 340: 832-849.
  • [22] Dinh HQ, López-Permouth SR. Cyclic and negacyclic codes over finite chain rings. IEEE T Inform Theory 2004; 50: 1728-1744.
  • [23] Dinh HQ, Nguyen BT, Sriboonchitta S. On a class of constacyclic codes of length 2ps over F pm[u] ⟨ua⟩ . Bulletin of the Korean Mathematical Society, 2018; 4: 1189-1208.
  • [24] Dinh HQ, Nguyen BT, Sriboonchitta S. On A Class Of Constacyclic Codes Of Length 4p s Over F pm[u] ⟨ua⟩ . Algebra Colloquium. (accepted).
  • [25] Dinh HQ, Wang L, Zhu S. Negacyclic codes of length 2ps over Fpm + uFpm . Finite Fields Appl 2015; 31: 178-201.
  • [26] Dougherty S, Gaborit P, Harada M, Sole P. Type II codes over F2 + uF2 . IEEE T Inform Theory 1999; 45: 32-45.
  • [27] Dougherty ST, Skriganov MM. Macwilliams duality and Rosenbloom-Tsfasman metric. Moscow Math J 2002; 2: 81-97.
  • [28] Falkner G, Kowol B, Heise W, Zehendner E. On the existence of cyclic optimal codes. Atti Sem Mat Fis Univ Modena 1979; 28: 326-341.
  • [29] Hammons AR, Kumar PV, Calderbank AR, Sloane NJA, Solé P. The Z4 -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE T Inform Theory 1994; 40: 301-319.
  • [30] Huffman WC, Pless V. Fundamentals of Error-Correcting Codes. Cambridge, UK: Cambridge University Press, 2003.
  • [31] Lee K. Automorphism group of the Rosenbloom-Tsfasman space. Eur J Combin 2003; 24: 607-612.
  • [32] Ling S, Solé P. Duadic codes over F2 + uF2 . Appl Algebra Engrg Comm Comput 2001; 12: 365-379.
  • [33] Massey JL, Costello DJ, Justesen J. Polynomial weights and code constructions. IEEE T Inform Theory 1973; 19: 101-110.
  • [34] McDonald BR. Finite Rings with Identity. Pure and Applied Mathematics. New York, NY, USA: Marcel Dekker, 1974.
  • [35] Nechaev AA. Kerdock code in a cyclic form. Diskr Math (USSR) 1989; 1: 123-139 (in Russian).
  • [36] Nedeloaia CS. Weight distributions of cyclic self-dual codes. IEEE T Inform Theory 2003; 49: 1582-1591.
  • [37] Norton G, Sălăgean-Mandache A. On the structure of linear cyclic codes over finite chain rings. Appl Algebra Engrg Comm Comput 2000; 10: 489-506.
  • [38] Pless V, Huffman WC. Handbook of Coding Theory. Amsterdam, the Netherlands: Elsevier, 1998.
  • [39] Prange E. Cyclic error-correcting codes in two symbols. TN 1957; 57-103.
  • [40] Prange E. Some cyclic error-correcting codes with simple decoding algorithms. TN 1958; 58-156.
  • [41] Prange E. The use of coset equivalence in the analysis and decoding of group codes. TN 1959; 59-164.
  • [42] Prange E. An algorithm for factoring xn ? 1 over a finite field. TN 1959; 59-175.
  • [43] Rosenbloom MY, Tsfasman MA. Codes for the m-metric. Problems Inf Trans 1997; 33: 45-52.
  • [44] Roth RM, Seroussi G. On cyclic MDS codes of length q over GF(q) . IEEE T Inform Theory 1986; 32: 284-285.
  • [45] Skriganov MM. On linear codes with large weights simultaneously for the Rosenbloom-Tsfasman and Hamming metrics. J Complexity 2007; 23: 926-936.
  • [46] Sobhani R, Esmaeili M. Cyclic and negacyclic codes over the Galois ring GR(p2;m) . Discrete Applied Mathematics 2009; 157: 2892-2903.
  • [47] van Lint JH. Repeated-root cyclic codes. IEEE T Inform Theory 1991; 37: 343-345.