Ricci–Yamabe maps for Riemannian flows and their volume variation and volume entropy

Ricci–Yamabe maps for Riemannian flows and their volume variation and volume entropy

The aim of this short note is to produce new examples of geometrical flows associated to a given Riemannianflow g(t) . The considered flow in covariant symmetric 2-tensor fields will be called Ricci–Yamabe map since it involves ascalar combination of Ricci tensor and scalar curvature of g(t) . Due to the signs of considered scalars the Ricci–Yamabeflow can be also a Riemannian or semi-Riemannian or singular Riemannian flow. We study the associated functionof volume variation as well as the volume entropy. Finally, since the two-dimensional case was the most commonlyaddressed situation we express the Ricci flow equation in all four orthogonal separable coordinate systems of the plane.

___

  • [1] Akrami Y, Koivisto TS, Solomon AR. The nature of spacetime in bigravity: two metrics or none. General Relativity and Gravitation 2015; 47 (1): 1838. doi: 10.1007/s10714-014-1838-4
  • [2] Blair DE. D- homothetic warping. Publications de l’Institut Mathematique (Beograd) (N.S.) 2013; 94 (108): 47-54.
  • [3] Boskoff W, Crasmareanu M. A Rosen type bi-metric universe and its physical properties. International Journal of Geometric Methods in Modern Physics 2018; 15 (10): 1850174. doi: 10.1142/S0219887818501748
  • [4] Boskoff W, Crasmareanu M, Pişcoran LI. Tzitzeica equations and Tzitzeica surfaces in separable coordinate systems and the Ricci flow tensor field. Carpathian Journal of Mathematics 2017; 33 (2): 141-151.
  • [5] Bourguignon JP. L’équation de la chaleur associée à la courbure de Ricci. Séminaire Bourbaki, Astérisque, tome 1987; 145-146, Séminaire Bourbaki (653): 45-61 (in French).
  • [6] Calvino-Louzao E, Garcia-Rio E, Gilkey P, Park JH, Vázquez-Lorenzo JH. Aspects of differential geometry: III. Synthesis Lectures on Mathematics and Statistics, no. 18, Morgan&Claypool Publishers, 2017.
  • [7] Catino G, Cremaschi L, Djadli Z, Mantegazza C, Mazzieri L. The Ricci–Bourguignon flow. Pacific Journal of Mathematics 2017; 28 (2): 337-370.
  • [8] Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Graduate Studies in Mathematics, Volume 77. Providence, RI, USA: Science Press, 2006.
  • [9] Cimpoiasu R, Constantinescu R. Symmetries and invariants for the 2D-Ricci flow model. Journal of Nonlinear Mathematical Physics 2006; 13 (1-4): 285-292.
  • [10] Crasmareanu M. A gradient-type deformation of conics and a class of Finslerian flows. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica 2017; 25 (2): 85-99. doi: 10.1515/auom-2017-0022
  • [11] Crasmareanu M, Kitayama M. Transformations of generalized Lagrange metrics. Tensor 2000; 62 (2): 167-175.
  • [12] Lu WJ. Geometric flows on warped product manifold. Taiwanese Journal of Mathematics 2013; 17 (5): 1791-1817.
  • [13] Mesquita RR, Tsonev DM. On the spectra of geometric operators evolving with geometric flows. arXiv:1706.06148, 2017.
  • [14] Min-Oo M, Ruh EA. Curvature deformations in ”Curvature and topology of Riemannian manifolds”. Katata, 1985, 80-190, Lecture Notes in Mathematics 1201, Berlin, Germany: Springer, 1986. doi: 10.1007/BFb0075643
  • [15] Petersen P. Riemannian Geometry. 3rd edition. Graduate Texts in Mathematics, 171. Cham, Switzerland: Springer, 2016.
  • [16] Vasii CC. The volume entropy of a Riemannian metric evolving by the Ricci flow on a manifold of dimension 3 or above. Buletinul Stiintific al Universitatii ”Politehnica” din Timisoara. Seria Matematica-Fizica 2011; 56 (70) (2): 54-59.
  • [17] Zeng W, Gu XD. Ricci Flow for Shape Analysis and Surface Registration. Theories, Algorithms and Applications. Springer Briefs in Mathematics. New York, NY, USA: Springer, 2013.