On Kapranov's description of M0,n as a Chow quotient

On Kapranov's description of M0,n as a Chow quotient

We provide a direct proof, valid in arbitrary characteristic, of the result originally proven by Kapranov over C that the Hilbert quotient (P 1 ) n //H PGL2 and Chow quotient (P 1 ) n //Ch PGL2 are isomorphic to M0,n . In both cases this is done by explicitly constructing the universal family of orbit closures and then showing that the induced morphism is an isomorphism onto its image. The proofs of these results in many ways reduce to the case n = 4; in an appendix we outline a formalism of this phenomenon relating to certain operads.

___

  • [1] Behrend K, Manin Y. Stacks of stable maps and Gromov-Witten invariants. Duke Math J 1996; 85: 1–60.
  • [2] Dieudonn´e J, Grothendieck A. El´ements de g´eom´etrie alg´ebrique. Publications Math´ematiques de l’IH ´ ES, 1960. ´
  • [3] Getzler E, Kapranov M. Cyclic operads and cyclic homology. In: Yau ST, editor. Geometry, Topology and Physics for R. Bott. Cambridge, MA, USA: International Press, 1995, pp. 167–201.
  • [4] Giansiracusa N. Conformal blocks and rational normal curves. J Algebraic Geom 2013; 22: 773–793.
  • [5] Giansiracusa JH, Salvatore P. Cyclic operad formality for compactified moduli spaces of genus zero surfaces. T Am Math Soc 2012; 364: 5881–5911.
  • [6] Grothendieck A, Illusie L, Pierre B. S´eminaire de G´eom´etrie Alg´ebrique du Bois Marie: Th´eorie des intersections et th´eo`eme de Riemann-Roch. Lecture notes in mathematics 225. Berlin, Germany: Springer-Verlag, 1971.
  • [7] Kapranov M. Chow quotients of Grassmannians, I. In: Gelfand Seminar, Adv Soviet Math 16(2). Providence, RI, USA: Amer Math Soc, 1993, pp. 29–110.
  • 8] Kapranov M. Veronese curves and Grothendieck-Knudsen moduli space M0,n . J Algebraic Geom 1993; 2: 239–262.
  • [9] Knudsen F. The projectivity of the moduli space of stable curves, II: the stacks Mg,n . Math Scand 1983; 52: 161–199.
  • [10] Knudsen F, Mumford D. The projectivity of the moduli space of stable curves, I: preliminaries on “det” and “Div”. Math Scand 1976; 39: 19–55.
  • [11] Koll´ar J. Rational curves on algebraic varieties. Secaucus, NJ, USA: Springer, 1996.