On elements whose Moore–Penrose inverse is idempotent in a ∗-ring

On elements whose Moore–Penrose inverse is idempotent in a ∗-ring

: In this paper, we investigate the elements whose Moore–Penrose inverse is idempotent in a ∗-ring. Let Rbe a ∗-ring and a ∈ R†. Firstly, we give a concise characterization for the idempotency of a†as follows: a ∈ R†and a†is idempotent if and only if a ∈ R# and a2 = aa∗a, which connects Moore–Penrose invertibility and groupinvertibility. Secondly, we generalize the results of Baksalary and Trenkler from complex matrices to ∗-rings. Moreequivalent conditions which ensure the idempotency of a†are given. Particularly, we provide the characterizations forboth a and a† being idempotent. Finally, the equivalent conditions under which a is EP and a†is idempotent areinvestigated

___

  • [1] Baksalary OM, Trenkler G. Core inverse of matrices. Linear and Multilinear Algebra 2010; 58 (5-6): 681-697. doi: 10.1080/03081080902778222
  • [2] Baksalary OM, Trenkler G. On matrices whose Moore-Penrose inverse is idempotent. Linear and Multilinear Algebra 2020. doi: 10.1080/03081087.2020.1781038
  • [3] Ben-Israel A, Greville TNE. Generalized Inverses: Theory and Applications. 2nd ed. New York, NY, USA: SpringerVerlag, 2003.
  • [4] Bernstein DS. Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas. Princeton, NJ, USA: Princeton University Press, 2018.
  • [5] Campbell SL, Meyer CD. EP operators and generalized inverses. Canadian Mathematical Bulletin-Bulletin Canadien de Mathématiques 1975; 18 (3): 327-333. doi: 10.4153/CMB-1975-061-4
  • [6] Djordjević DS, Rakočević V. Lectures on Generalized Inverses. Faculty of Sciences and Mathematics, University of Nis. Nis, Serbia: University of Nis, 2008.
  • [7] Drazin MP. Pseudo-inverses in associative rings and semigroups. American Mathematical Monthly 1958; 65: 506- 514.
  • [8] Han RZ, Chen JL. Generalized inverses of matrices over rings. Chinese Quarterly Journal of Mathematics 1992; 7(4): 40-49.
  • [9] Hartwig RE. Block generalized inverses. Archive for Rational Mechanics and Analysis 1976; 61 (3): 197-251. doi: 10.1007/BF00281485
  • [10] Hartwig RE, Luh J. A note on the group structure of unit regular ring elements. Pacific Journal of Mathematics 1977; 71(2): 449-461.
  • [11] Koliha JJ. Elements of C ∗ -algebras commuting with their Moore-Penrose inverse. Studia Mathematica 2000; 139 (1): 81-90.
  • [12] Mosić D, Djordjević DS. Moore-Penrose-invertible normal and Hermitian elements in rings. Linear Algebra and its Applications 2009; 431 (5-7): 732-745. doi: 10.1016/j.laa.2009.03.023
  • [13] Mosić D, Djordjević DS, Koliha JJ. EP elements in rings. Linear Algebra and its Applications 2009; 431 (5-7): 527-535. doi: 10.1016/j.laa.2009.02.032
  • [14] Patrício P, Puystjens R. Drazin-Moore-Penrose invertibility in rings. Linear Algebra and its Applications 2004; 389: 159-173. doi: 10.1016/j.laa.2004.04.006
  • [15] Penrose P. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 1955; 51: 406-413.
  • [16] Rakić DS, Dinˇcić NC, Djordjević DS. Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra and its Applications 2014; 463: 115-133. doi: 10.1016/j.laa.2014.09.003
  • [17] Xu SZ, Chen JL, Zhang XX. New characterizations for core inverses in rings with involution. Frontiers Mathematics in China 2017; 12 (1): 231-246. doi: 10.1007/s11464-016-0591-2
  • [18] Zhu HH, Chen JL, Patrício P. Further results on the inverse along an element in semigroups and rings. Linear and Multilinear Algebra 2016; 64 (3): 393-403. doi: 10.1080/03081087.2015.104371