Legendre wavelet solution of high order nonlinear ordinary delay differential equations

Legendre wavelet solution of high order nonlinear ordinary delay differential equations

The purpose of this paper is to illustrate the use of the Legendre wavelet method in the solution of high-ordernonlinear ordinary differential equations with variable and proportional delays. The main advantage of using Legendrepolynomials lies in the orthonormality property, which enables a decrease in the computational cost and runtime. Themethod is applied to five differential equations up to sixth order, and the results are compared with the exact solutionsand other numerical solutions when available. The accuracy of the method is presented in terms of absolute errors. Thenumerical results demonstrate that the method is accurate, effectual and simple to apply

___

  • [1] Abdullah ZA. Solution of nonlinear ordinary delay differential equations using variational approach. Journal of Al-Nahrain University 2012; 15(4): 183-187. doi:10.22401/JNUS.15.4.26
  • [2] Aboodh KS, Farah RA, Almardy IA, Osman AK. Solving delay differential equations by Aboodh transformation method. International Journal of Applied Mathematics & Statistical Sciences 2018; 7(2): 55-64.
  • [3] Ali I, Brunner H, Tang T. A Spectral method for pantograoh-type delay differential equations and its convergence analysis. Journal of Computational Mathematics 2009; 27(2-39): 254-265.
  • [4] Arfken GB, Weber HJ. Mathematical Methods for Physicists. 6th ed. London, UK: Elsevier Academic Press, 2005.
  • [5] Babolian E, Fattahzadeh F. Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Applied Mathematics and Computation 2007; 188: 417-426. doi:10.1016/j.amc.2006.10.008
  • [6] Benhammouda B, Vazquez-Leal H. A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations. SpringerPlus 2016; 5(1): 1723. doi:10.1186/s40064- 016-3386-8
  • [7] Benhammouda B, Vazquez-Leal H, Hernandez-Martinez L. Procedure for exact solutions of nonlinear Pantograph delay differential equations. British Journal of Mathematics & Computer Science 2014; 4(19): 2738-2751. doi: 10.9734/BJMCS/2014/11839
  • [8] Blanco-Cocom L, Estrella AG, Avila-Vales E. Solving delay differential systems with history functions by the Adomian decomposition method. Applied Mathematics and Computation 2012; 218: 5994-6011. doi:10.1016/j.amc.2011.11.082
  • [9] Bocharova GA, Rihanb FA. Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics 2000; 125: 183-199. doi:10.1016/S0377-0427(00)00468-4
  • [10] Boggess A, Narcowich FJ. A First Course in Wavelets With Fourier Analysis. New York, NY, USA: John Wiley and Sons Inc, 2001.
  • [11] Canuto C, Hussaini M, Quarteroni A, Zang T. Spectral Methods in Fluid Dynamics. Berlin, Germany: Springer, 1988.
  • [12] Caruntu B, Bota C. Analytical approximate solutions for a general class of nonlinear delay differential equations. Scientific World Journal 2014; 2014:6. doi: 10.1155/2014/631416
  • [13] Davaeifar S, Rashidinia J. Solution of a system of delay differential equations of multipantograph type. Journal of Taibah University for Science 2017; 11: 1141-1157. doi:10.1016/j.jtusci.2017.03.005
  • [14] Evans DJ, Raslan KR. The Adomian decomposition method for solving delay differential equations. International Journal of Computer Mathematics 2005; 82(1): 49-54. doi: 10.1080/00207160412331286815
  • [15] Goswami JC, Chan AK. Fundamentals of Wavelets, Theory, Algorithms and Applications. New York, NY, USA: John Wiley and Sons Inc, 2011.
  • [16] Gu JS, Jiang WS. The Haar wavelets operational matrix of integration. International Journal of Systems Science 1996; 27: 623-628.
  • [17] Gümgüm S, Baykuş-Savaşaneril N, Kürkçü ÖK, Sezer M. Lucas polynomial solution of nonlinear differential equations with variable delays. Hacettepe Journal of Mathematics & Statistics 2019; doi: 10.15672/hujms.460975
  • [18] Ha P. Analysis and Numerical Solutions of Delay Differential-Algebraic Equations. PhD, Technical University Of Berlin, Berlin, Germany, 2015.
  • [19] Hafshejani MS, Vanani SK, Hafshejani JS. Numerical Solution of delay differential equations using Legendre wavelet method. World Applied Sciences Journal 2011; 13(Special Issue of Applied Math): 27-33.
  • [20] Ismail F, Al-Khasawneh RA, Lwin AS, Suleiman M. Numerical treatment of delay differential equations by Runge- Kutta method using Hermite interpolation. Matematika 2002; 18(2): 79-90.
  • [21] Karimi-Vanani S, Aminataei A. On the numerical solution of nonlinear delay differential equations. Journal of Concrete and Applicable Mathematics 2010; 8(4): 568-576.
  • [22] Khader MM. Numerical and theoretical treatment for solving linear and nonlinear delay differential equations using variational iteration method. Arab Journal of Mathematical Sciences 2013; 19(2): 243-256. doi:10.1016/j.ajmsc.2012.09.004
  • [23] Kumar D, Upadhyay S, Singh, S, Rai KN. Legendre wavelet collocation solution for system of linear and nonlinear delay differential equations. International Journal of Applied and Computational Mathematics 2017; 3(Suppl 1): 295-310. doi:10.1007/s40819-017-0356-y
  • [24] Kythe PK, Schaferkotter MR. Handbook of Computational Methods for Integration. USA: Chapman and Hall/CRC Press, 2011.
  • [25] Martin JA, Garcia O. Variable multistep methods for delay differential equations. Mathematical and Computer Modelling 2002; 35: 241-257. doi:10.1016/S0895-7177(01)00162-5
  • [26] Mirzaee F, Latifi L. Numerical solution of delay differential equations by differential transform method. Journal of Sciences (Islamic Azad University) 2011; 20(78/2): 83-88.
  • [27] Mohammadi F, Hosseini MM. A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. Journal of the Franklin Institute 2011; 348: 1787-1796. doi:10.1016/j.jfranklin.2011.04.017
  • [28] Mohammadi F, Hosseini MM, Mohyud-din ST. Legendre wavelet Galerkin method for solving ordinary differential equations with nonanalytic solution. International Journal of Systems Science 2011; 42: 579-585. doi:10.1080/00207721003658194
  • [29] Oberle HJ, Pesch HJ. Numerical treatment of delay differential equations by Hermite interpolation. Numerische Mathematik 1981; 37: 235-255.
  • [30] Ogunfiditimi FO. Numerical solution of delay differential equations using the Adomian decomposition dethod. The International Journal Of Engineering And Science 2015; 4(5): 18-23.
  • [31] Ravi-Kanth ASV, Murali-Mohan Kumar P. A numerical technique for solving nonlinear singularly perturbed delay differential equations. Mathematical Modelling and Analysis 2018; 23(1): 64-78. doi:10.3846/mma.2018.005
  • [32] Razzaghi M, Yousefi S. The Legendre wavelets operational matrix of integration. International Journal of Systems Science 2001; 32: 495-502. doi:10.1080/00207720120227
  • [33] Shakeri F, Dehghan M. Solution of delay differential equations via a homotopy perturbation method. Mathematical and Computer Modelling 2008; 48: 486-498. doi:10.1016/j.mcm.2007.09.016
  • [34] Shiralashetti SC, Hoogar BS, Kumbinarasaiah S. Hermite wavelet based method for the numerical solution of linear and nonlinear delay differential equations. International Journal of Engineering, Science and Mathematics 2017; 6(8): 71-79.
  • [35] Stephen AG, Kuang Y. A delay reaction-diffusion model of the spread of bacteriophage infection. Society for Industrial and Applied Mathematics 2005; 65(2): 550-566. doi:10.1137/S0036139903436613
  • [36] Yüzbaşı Ş. An efficient algorithm for solving multi-pantograph equation systems. Computers & Mathematics with Applications 2012; 64: 589-603. doi:10.1016/j.camwa.2011.12.062
  • [37] Yüzbaşı Ş. A numerical approximation based on the Bessel functions of first kind for solutions of Riccati type differential-difference equations. Computers & Mathematics with Applications 2012; 64:1691-1705. doi:10.1016/j.camwa.2012.01.026
  • [38] Yüzbaşı Ş. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations. Journal of Taibah University for Science 2017; 11(2): 344-352. doi:10.1016/j.jtusci.2016.04.001
  • [39] Yüzbaşı Ş, Şahin N. On the solutions of a class of nonlinear ordinary differential equations by the Bessel polynomials. Journal of Numerical Mathematics 2012; 20(1): 55-79. doi:10.1515/jnum-2012-0003
  • [40] Yüzbaşı Ş. A numerical scheme for solutions of a class of nonlinear differential equations. Journal of Taibah University for Science 2017; 11: 1165-1181. doi:10.1016/j.jtusci.2017.03.001
  • [41] Yüzbaşı Ş. A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics. Mathematical Methods in the Applied Sciences 2011; 34: 2218-2230. doi:10.1002/mma.1519
  • [42] Yüzbaşı Ş, Sezer M. Shifted Legendre approximation with the residual correction to solve pantograph-delay type differential equations. Applied Mathematical Modelling 2015; 39: 6529-6542. doi:10.1016/j.apm.2015.02.006
  • [43] Taiwo OA, Odetunde OS. On the numerical approximation of delay differential equations by a decomposition method. Asian Journal of Mathematics & Statistics 2010; 3(4): 237-243. doi: 10.3923/ajms.2010.237.243
  • [44] Wang ZQ, Wang LL. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete and Continuous Dynamical Systems Series B 2010; 13(3): 685-708. doi:10.3934/dcdsb.2010.13.685
  • [45] Yousefi SA. Legendre scaling function for solving generalized Emden-Fowler Equations. International Journal of Information and Systems Sciences 2007; 3: 243-250.