Construction of the holonomy invariant foliated cocycles on the tangent bundle via formal integrability

Construction of the holonomy invariant foliated cocycles on the tangent bundle via formal integrability

This paper is dedicated to exhaustive structural analysis of the holonomy invariant foliated cocycles on thetangent bundle of an arbitrary (m + n) -dimensional manifold. For this purpose, by applying Spencer theory of formalintegrability, sufficient conditions for the metric associated with the semispray S are determined to extend to a transversemetric for the lifted foliated cocycle on TM. Accordingly, this geometric structure converts to a holonomy invariantfoliated cocycle on the tangent space, which is totally adapted to the Helmholtz conditions.

___

  • [1] Anderson I, Thompson G. The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations. Providence, RI, USA: American Mathematical Society, 1992.
  • [2] Antonelli PL, Bucataru I. KCC-heory of a system of second order differential equations. In: Antonelli PL, editor. Handbook of Finsler Geometry, Vol. I. Dordrecht, the Netherlands: Kluwer Academic Publisher, 2003, pp. 83-174.
  • [3] Antonelli PL, Ingarden RS, Matsumoto M. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Dordrecht, the Netherlands: Kluwer Academic Publisher, 1993.
  • [4] Antonelli PL, Miron R. Lagrange and Finsler Geometry. Applications to Physics and Biology. Dordrecht, the Netherlands: Kluwer Academic Publisher, 1996.
  • [5] Beil RG. Finsler geometry and relativistic field theory. Found Phys 2003; 33: 1107-1127.
  • [6] Bejancu A, Farran HR. Foliations and Geometric Structures. Amsterdam, the Netherlands: Springer-Verlag, 2006.
  • [7] Bejancu A, Farran HR. Geometry of Pseudo-Finsler Submanifolds. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2000.
  • [8] Bucataru I, Dahl MF. Semi basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. J Geom Mech 2009; 1: 159-180.
  • [9] Bucataru I, Miron R. Finsler-Lagrange Geometry: Applications to Dynamical Systems. Bucharest, Romania: Editura Academiei Romane, 2007.
  • [10] Bucataru I, Muzsnay Z. Projective metrizability and formal integrability. Symmetry Integr Geom 2011; 7: 114-22.
  • [11] Crampin M. On horizontal distributions on the tangent bundle of a differentiable manifold, J London Math Soc 1971; 2: 178-182.
  • [12] Crampin M. On the differential geometry of the Euler-Lagrange equation and the inverse problem of Lagrangian dynamics. J Phys A-Math Gen 1981; 14: 2567-2575.
  • [13] Crampin M, Martinez E, Sarlet W. Linear connections for systems of second-order ordinary differential equations. Ann Henri Poincare 1996; 65: 223-249.
  • [14] Crasmareanu M. Metrizable systems of autonomous second order differential equations. Carpathian J Math 2009; 25: 163-176.
  • [15] Crasmareanu M. Semi-basic 1-forms and Courant structure for metrizability problems. Publ l Math-Beograd 2015; 98: 153-163.
  • [16] Dombrowski P. On the geometry of tangent bundle. J Reine Angew Math 1962; 210: 73-88.
  • [17] Grifone J. Structure presque-tangente et connexions I, II. Ann Henri Poincare 1972; 22: 287-334 (in French).
  • [18] Grifone J, Muzsnay Z. Variational Principles for Second-Order Differential Equations. Application of the Spencer Theory to Characterize Variational Sprays. Singapore: World Scientific, 2000.
  • [19] Gromoll D, Walschap G. Metric Foliations and Curvature. Progress in Mathematics. Basel, Switzerland: Birkhauser, 2009.
  • [20] Kobayashi S, Nomizu K. Foundations of Differential Geometry, Vol. I, II. New York, NY, USA: Interscience, 1963.
  • [21] Krupkova O. The Geometry of Ordinary Variational Equations. Berlin, Germany: Springer-Verlag, 1997.
  • [22] Krupkova O, Prince GE. Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations. In: Krupka D, Saunders D. Handbook of Global Analysis. Amsterdam, the Netherlands: Elsevier, 2007, pp. 837-904.
  • [23] Lackey B. A model of trophodynamics. Nonlinear Anal-Real 1999; 35: 37-57.
  • [24] Laleh A, Rezaii MM, Ahangari F. Identification of Riemannian foliations on the tangent bundle via SODE structure. B Iran Math Soc 2012; 38: 669-688.
  • [25] Miron R. A Lagrangian theory of relativity I, II. Analele Stiintifice ale Univ Al I Cuza Iasi s I Math 1986; 2: 7-16.
  • [26] Miron R, Anastasiei M. The Geometry of Lagrange Spaces: Theory and Applications. Dordrecht, the Netherlands: Kluwer Academic Publisher, 1994.
  • [27] Miron R, Anastasiei M. Vector Bundles and Lagrange Spaces with Applications to Relativity. Bucharest, Romania: Geometry Balkan Press, 1997.
  • [28] Moerdijk I, Mrcun J. Introduction to Foliations and Lie Groupoids. Cambridge, UK: Cambridge University Press, 2003.
  • [29] Molino P. Riemannian Foliations. Progress in Mathematics. Boston, MA, USA: Birkhauser, 1988.
  • [30] Popescu M, Popescu P. Projectable non-linear connections and foliations. In: Proceedings of Summer School on Differential Geometry, University of Coimbra, 1999, pp. 159-165.
  • [31] Popescu P, Popescu M. Lagrangians adapted to submersions and foliations. Differ Geom Appl 2009; 27: 171-178.
  • [32] Reinhart BL. Foliated manifolds with bundle-like metric. Ann Math 1959; 69: 119-132.
  • [33] Rezaii MM, Fakhri AA. On projectively related warped product Finsler manifolds. Int J Geom Methods M 2011; 8: 953-967.
  • [34] Sarlet W. The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. J Phys A 1982; 15: 1503-1517.
  • [35] Tondeur PH. Geometry of Foliations. Basel, Switzerland: Birkhauser, 1997.
  • [36] Yano K, Ishihara S. Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker Inc., 1973.