C*-convexity and C* -faces in ∗-rings

C*-convexity and C* -faces in ∗-rings

Existence of rich algebraic, geometric and topological structures on self-adjoint operator algebras raises the general question that, for a particular theorem which of these structures have made the result work. The present paper is an effort toward the answer of this question, by investigating the role of algebraic structure in the subject of $C^ ast$ -convexity. In this paper, we extend the notions of $C^ ast$ -convexity, $C^ ast$ -extreme point and $C^ ast$ -face to ∗-rings and we study some of their properties. We introduce the notion of $C^ ast$ -convex map on $C^ ast$ -convex subsets of a ∗-ring. Moreover we identify optimal points of some unital ∗-homomorphisms on some $C^ ast$ -convex sets.

___

  • [1] Berberian, S. K.: Baer ∗-rings. Springer Verlag 1972.
  • [2] Berberian, S. K.: Baer rings and Baer ∗-rings. Springer Verlag 2003.
  • [3] Ebrahimi, A., Esslamzadeh, G. H.: Numerical ranges in ∗-rings. preprint.
  • [4] Effros, E., Winkler, S.: Matrix convexity: Operator analogues of Bipolar and Hahn-Banach theorems. J. Funct. Anal. 144, 117-152 (1997).
  • [5] Farenick, D. R.: $C^ ast$ -convexity and matricial ranges. Canad. J. Math. 44, 280-297 (1992).
  • [6] ———: Krein-Milman type problems for compact matricially convex sets. Lin. Alg. Appl. 162-164, 325-334 (1992).
  • [7] ———: Pure matrix states on operator systems. Lin. Alg. Appl. 393, 149-173 (2004).
  • [8] Farenick, D. R., Morenz, P. B.: $C^ ast$ -extreme points of some compact $C^ ast$ -convex sets. Proc. Amer. Math. Soc. 118, 765-775 (1993).
  • [9] ———: $C^ ast$ -extreme points in the generalised state spaces of a $C^ ast$ -algebra. Trans. Amer. Math. Soc. 349, 1725-1748 (1997).
  • [10] Farenick, D. R., Zhou, H.: The structure of $C^ ast$ -extreme points in spaces of completely positive linear maps on $C^ ast$ -algebras. Proc. Amer. Math. Soc. 126 no. 5, 1467-1477 (1998).
  • [11] Hopenwasser, A., Moore, R. L., Paulsen, V. I.: $C^ ast$ -extreme points. Trans. Amer. Math. Soc. 163, 291-307 (1981).
  • [12] Loebl, R., Paulsen, V. I.: Some remarks on $C^ ast$-convexity. Lin. Alg. Appl. 35, 63-78 (1981).
  • [13] Magajna, B.: $C^ ast$ -convex sets and completely bounded bimodule homomorphisms. Proc. Roy. Soc. Edinburgh Sect. A. 130 no. 2, 375-387 (2000).
  • [14] ———-: $C^ ast$ -convexity and the numerical range. Canad. Math. Bull. 43 no. 2, 193-207 (2000).
  • [15] ———-: On $C^ ast$ -extreme points. Proc. Amer. Math. Soc. 129, 771-780 (2000).
  • [16] Morenz, P. B.: The structure of $C^ ast$ -convex sets. Canad. J. Math. 46, 1007-1026 (1994).
  • [17] Palmer, T.W.: Banach Algebras and The General Theory of ∗-algebras. vol. II. Cambridge University Press 2001.
  • [18] Roberts, A. W., Varberg, D. E.: Convex Functions. Academic Press 1973.
  • [19] Sakai, S.: $C^ ast$ -algebras and $W^ ast$ -algebras. Springer-Verlag 1998.
  • [20] Webster, C., Winkler, S.: The Krein-Milman theorem in operator convexity. Trans. Amer. Math. Soc. 351, 307-322 (1999).