A note on the Lyapunov exponent in continued fraction expansions

Let T:[0,1) \to [0,1) be the Gauss transformation. For any irrational x \in [0,1), the Lyapunov exponent a(x) of x is defined as a(x)=\limn\to\infty\frac{1}{n} \log |(Tn)'(x)|. By Birkoff Average Theorem, one knows that a(x) exists almost surely. However, in this paper, we will see that the non-typical set \{x\in [0,1):\limn\to\infty\frac{1}{n} \log |(Tn)'(x)| does not exist\} carries full Hausdorff dimension.

A note on the Lyapunov exponent in continued fraction expansions

Let T:[0,1) \to [0,1) be the Gauss transformation. For any irrational x \in [0,1), the Lyapunov exponent a(x) of x is defined as a(x)=\limn\to\infty\frac{1}{n} \log |(Tn)'(x)|. By Birkoff Average Theorem, one knows that a(x) exists almost surely. However, in this paper, we will see that the non-typical set \{x\in [0,1):\limn\to\infty\frac{1}{n} \log |(Tn)'(x)| does not exist\} carries full Hausdorff dimension.

___

  • In this case, we have |x1− x2| ≥ (2B)4q2 n k+1 q2 mk+1−( 1+···+ k) (a1(x1),· · · , amk+1(x1)) A similar estimation on qnk+1gives that |f(x)− f(x2)| ≤ (2B)4|x1− x| + . This completes the proof. Barreira, L. and Schmeling, J.: Invariant sets with zero measure and full Hausdorff diemnsion, Elecronic Research Announc. Amer. Math. Soc. 114-1183 (1997).
  • Barreira, L. and Schmeling, J.: Set of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116, 29-70 (2000).
  • Billingsley, P.: Ergodic Theory and Information, John New York, Wiley 1965.
  • Falconer, K. J.: Fractal Geometry, Mathematical Foundations and Application, New York, Wiley 1990.
  • Good,I. J.: The fractional dimensional theory of continued fractions, Proc. Camb. Philos. Soc. 37, 199-228 (1941).
  • Jarnik, I.: Zur metrischen Theorie der diopahantischen Approximationen, Proc. Mat. Fyz. 36, 91-106 (1928).
  • Khintchine, A. Ya.: Continued Fractions, P. Noordhoff, The Netherlands, Groningen 1963.
  • L´evy, P.: Sur les lois de probabilit´e dont d´epent les quotients complets et incomplets d’une fraction continue, Bull. Soc. Math. 57, 178-194 (1929).
  • Mauldin, R. D., Urba´nski, M.: Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer. Math. Soc. 351 (12), 4995-5025 (1999).
  • Wu, J.: A remark on the growth of the denominators of convergents, Monatsh. Math. 147(3), 259-264 (2006). Jianzhong CHENG
  • The Basis Department of the Communication and Commanding College of the P.L.A., Wuhan, P. R. CHINA Lu-Ming SHEN Science College of Hunan Agriculture University Changsha, Hunan, 410128,P.R. CHINA e-mail: lum s@126.com