A Köthe–Toeplitz dual of a generalized Cesàro difference sequence space, a degenerate Lorentz space, their corresponding function spaces and fpp

A Köthe–Toeplitz dual of a generalized Cesàro difference sequence space, a degenerate Lorentz space, their corresponding function spaces and fpp

In 1970, Cesàro sequence spaces was introduced by Shiue. In 1981, Kızmaz defined difference sequence spaces for ℓ ∞ , c0 and c. Then, in 1983, Orhan introduced Cesàro difference sequence spaces. Both works used difference operator and investigated the Köthe–Toeplitz dual for the new Banach spaces they introduced. Later, various authors generalized these new spaces, especially the one introduced by Orhan. In this study, first we discuss the fixed point property for these spaces and for the corresponding function space of the Köthe–Toeplitz dual. Moreover, we consider another generalized space which is a degenerate Lorentz space because the spaces we consider are somehow related in terms of their construction. In fact, the Köthe–Toeplitz dual is contained in $ℓ^1$ , the corresponding function space contains Lebesgue space, the Banach space of Lebesgue integrable functions on $[0, 1], L_1[0, 1]$ but for the degenerate Lorentz space and its corresponding function space, this is reversed completely. Then, as an important result, for both function spaces we show that they fail the weak fixed point property for isometries and even for contractions. As the second main result, by passing to counting measure, we take the corresponding sequence spaces, and for both spaces we get large classes of closed, bounded and convex subsets satisfying the fixed point property for nonexpansive mappings as a Goebel and Kuczumow analogy after noting that in $ℓ^1$Goebel and Kuczumow found a large class with the fixed point property for nonexpansive mappings.

___

  • [1] Alspach D. A fixed point free nonexpansive mapping. Proceedings of the American Mathematical Society 1981; 82: 423-424.
  • [2] Aydogan SM, Sakar FM, Fatehi M, Rezapour S, Masiha HP. Two hybrid and non-hybrid k-dimensional inclusion systems via sequential fractional derivatives. Advances in Difference Equations 2021; 449: 1-21.
  • [3] Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae 1922; 3: 133-181.
  • [4] Burns J, Lennard C, Sivek J. A contractive fixed point free mapping on a weakly compact convex set. Studia Mathematica 2014; 3 (223): 275-283.
  • [5] Casini E, Miglierina E, Piasecki Ł. Separable Lindenstrauss spaces whose duals lack the weak* fixed point property for nonexpansive mappings. Studia Mathematica 2017; 238: 1-16.
  • [6] Chen S, Cui Y, Hudzik H, Sims B. Geometric properties related to fixed point theory in some Banach function lattices. In: Kirk WA, Sims B (editors). Handbook of metric fixed point theory. Dordrecht: Springer, 2001, pp. 339-389.
  • [7] Cui Y. Some geometric properties related to fixed point theory in Cesàro spaces. Collectanea Mathematica 1999; 277-288.
  • [8] Cui Y, Hudzik H, Li Y. On the Garcia-Falset Coefficient in Some Banach Sequence Spaces. In: Hudzik H, Skrzypcazk L (editors). Function Spaces. CRC Press, 2000, pp. 163-170.
  • [9] Cui Y, Meng C, Płuciennik R. (2000). Banach–Saks Property and Property (β ) in Cesàro Sequence Spaces. Southeast Asian Bulletin of Mathematics 2000; 24 (2): 201-210.
  • [10] Dowling PN, Lennard CJ, Turett B. Some more examples of subsets of c0 and $L_1[0, 1]$ failing the fixed point property. Contemporary Mathematics 2003; 328: 171-176.
  • [11] Dowling PN, Lennard CJ, Turett B. New fixed point free nonexpansive maps on weakly compact, convex subsets of $L_1[0, 1]$. Studia Math 2007; 180 (3): 271-284.
  • [12] Et M, Çolak R. On some generalized difference sequence spaces. Soochow Journal of Mathematics 1995; 21 (4): 377-386.
  • [13] Et M. (1996). On some generalized Cesàro difference sequence spaces. İstanbul University Science Faculty The Journal Of Mathematics, Physics and Astronomy 1996; 55: 221-229.
  • [14] Everest T. Fixed points of nonexpansive maps on closed, bounded, convex sets in $ℓ^1$ . PhD, University of Pittsburgh, Pittsburgh, PA, USA, 2013.
  • [15] Falset JG. The fixed point property in Banach spaces with the NUS-property. Journal of Mathematical Analysis and Applications 1997; 215 (2): 532-542.
  • [16] Goebel K, Kuczumow T. Irregular convex sets with fixed-point property for nonexpansive mappings. Colloquium Mathematicum 1979; 2 (40): 259-264.
  • [17] Hardy GH, Littlewood JE, Polya G. (1952). Inequalities. Cambridge: Cambridge university press, 1952.
  • [18] Kızmaz H. On certain sequence spaces. Canadian Mathematical Bulletin 1981; 24 (2): 169-176.
  • [19] Kirk WA. A fixed point theorem for mappings which do not increase distances. The American Mathematical Monthly 1965; 72 (9): 1004-1006.
  • [20] Lindenstraus J, Tzafriri L. Classical Banach spaces I: Sequence spaces. Berlin and New York: Springer-Verlag, 1977.
  • [21] Lindenstraus J, Tzafriri L. Classical Banach spaces II: function spaces. (Vol. 97), Springer Science & Business Media, 2013.
  • [22] Llorens–Fuster E, Sims B. The fixed point property in $c_0$ . Canadian Mathematical Bulletin 1998; 41 (4): 413-422.
  • [23] Lorentz GG. Some new functional spaces. Annals of Mathematics 1950; 37-55.
  • [24] Maurey B. Points fixes des contractions de certains faiblement compacts de $L^1$ . Seminaire d’Analyse Fonctionelle, 1980-1981, Centre de Mathématiques, École Polytech., Palaiseau, Exp. No. VIII, 19 pp., 1981.
  • [25] NgPeng-Nung NN, LeePeng-Yee LY. Cesàro sequence spaces of nonabsolute type. Commentationes mathematicae 1978; 20 (2): 429-433.
  • [26] Orhan C. Casaro Differance Sequence Spaces and Related Matrix Transformations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 1983; 32: 55-63.
  • [27] Rezapour S, Sakar FM, Aydoğan SM, Ravash E. Some results on a system of multiterm fractional integro-differential equations. Turkish Journal of Mathematics 2020; 44 (6) : 2004-2020.
  • [28] Schauder J. Der Fixpunktsatz in Funktional-raumen. Studia Studia Mathematica 1930; 2 (1): 171-180
  • [29] Shiue JS. (1970). On the Cesaro sequence spaces. Tamkang Journal of Mathematics 1970; 1 (1): 19-25.
  • [30] Sine R. Remarks on the example of Alspach. Nonlinear Analysis and Applications, Marcel Dekker 1981; 237-241.
  • [31] Sivek J. Differentiability, summability, and fixed points in Banach spaces. PhD, University of Pittsburgh, Pittsburgh, PA, USA, 2014.
  • [32] Steiner J. Gesammelte Werke I, II, Reimer. 1881.
  • [33] Tripathy BC, Esi A, Tripathy B. On new types of generalized difference Cesaro sequence spaces. Soochow Journal of Mathematics 2005; 31 (3): 333-340.