A geometric description for simple and damped harmonic oscillators

A geometric description for simple and damped harmonic oscillators

In this work we consider the Riemannian geometry associated with the differential equations of onedimensional simple and damped linear harmonic oscillators. We show that the sectional curvatures are completelydetermined by the oscillation frequency and the friction coefficient and these physical constants can be thought asobstructions for the manifold to be flat. Moreover, equations of simple and damped harmonic oscillators describenonisomorphic solvable Lie groups with nonpositive scalar curvature.

___

  • [1] Andronov AA, Vitt AA, Khaikin SE. Theory of Oscillators. Oxford, UK: Pergamon Press, 1966.
  • [2] Bayrakdar T, Ergin AA. Minimal surfaces in three-dimensional Riemannian manifold associated with a second-order ODE. Mediterranean Journal of Mathematics 2018; 15: 183. doi: 10.1007/s00009-018-1229-2
  • [3] Berdinsky DA, Taimanov IA. Surfaces in three-dimensional Lie groups. Siberian Mathematical Journal 2005; 46: 1005-1019. doi: 10.1007/s11202-005-0096-9
  • [4] Bryant R, Dunajski M, Eastwood M. Metrisability Of two-dimensional projective structures. Journal of Differential Geometry 2009; 83: 465-499.
  • [5] Bucataru I. Metric nonlinear connections. Differential Geometry and its Applications 2007; 25: 335-343.
  • [6] Cartan E. Riemannian Geometry in an Orthogonal Frame. Singapore: World Scientific, 2001.
  • [7] Cartan E. Sur les varietes à connection projective. Bulletin de la Société Mathématique de France 1924; 52: 205-241 (in French).
  • [8] Crampin M. On horizontal distributions on the tangent bundle of a differentiable manifold. Journal of the London Mathematical Society 1971; 2 (3): 178-182.
  • [9] Crampin M, Marínez E, Sarlet W. Linear connections for systems of second-order ordinary differential equations. Annales de l’Institut Henri Poincaré 1996; 2: 223-249.
  • [10] Crampin M, Saunders DJ. Cartan’s concept of duality for second-order ordinary differential equations. Journal of Geometry and Physics 2005; 54: 146-172.
  • [11] Dryuma VS, Matsumoto M. The theory of second-order differential equations based on Finsler geometry. Journal of Mathematics of Kyoto University 2000; 40 (4): 591-602.
  • [12] Eastwood M and Matveev V. Metric connections in projective differential geometry In: Eastwood M, Miller W (editors). Symmetries and Overdetermined Systems of Partial Differential Equations . New York, NY, USA: Springer; 2008. pp. 339-350.
  • [13] Fels ME. The equivalence problem for systems of second-order ordinary differential equations. Proceedings of the London Mathematical Society 1995; 71 (1): 221-240.
  • [14] Fritelli S, Kozameh C, Newman ET. Differential geometry from differential equations. Communications in Mathematical Physics 2001; 223: 383-408.
  • [15] Grissom C, Thompson G, Wilkens G. Linearization of second order ordinary differential equations via Cartan’s equivalence method. Journal of Differential Equations 1989; 77: 1-15.
  • [16] Inoguchi J. Minimal surfaces in 3-dimensional solvable lie groups. Chinese Annals of Mathematics, Series B 2003; 24 (1): 73-84.
  • [17] Inoguchi J. Minimal surfaces in 3-dimensional solvable Lie groups II. Bulletin of the Australian Mathematical Society 2006; 73: 365-374.
  • [18] Inoguchi J. Minimal surfaces in the 3-dimensional Heisenberg group. Differential Equations and Dynamical Systems 2008; 10: 163-169.
  • [19] Ivey TA, Landsberg JM. Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. Providence, RI, USA: American Mathematical Society, 2003.
  • [20] Kamran N, Lamb K, Shadwick WF. The local equivalence problem For d2y/dx2 = F(x, y, dy/dx) and the Painlevé Transcendents. Journal of Differential Geometry 1985; 22: 139-150.
  • [21] Krupka D, Saunders D. (Eds.). Handbook of Global Analysis. Oxford, UK: Elsevier, 2008.
  • [22] Milnor J. Curvatures of left invariant metrics on lie groups. Advances in Mathematics 1976; 21 (3): 293-329.
  • [23] Montgomery R. A Tour of Subriemannian Geometries, Their Geodesics and Applications. Providence, RI, USA: American Mathematical Society, 2002.
  • [24] Morita S. Geometry of Differential Forms. Providence, RI, USA: American Mathematical Society, 2001.
  • [25] Newman ET, Nurowski P. Projective connections associated with second order ODEs. Classical and Quantum Gravity 2003; 20: 2325-2335.
  • [26] Ok Bayrakdar Z, Bayrakdar T. Burgers’ equations in the Riemannian geometry associated with first-order differential equations. Advances in Mathematical Physics 2018. doi: 10.1155/2018/7590847
  • [27] Tresse MA. Determination des Invariantes Ponctuels de l’Equation Differentielle du Second Ordre y ′′ = ω(x, y, y ′ ) . Leipzig, Bei S. Hirzel 1896 (in French).
  • [28] Vassiliou PJ, Lisle IG. Geometric Approaches to Differential Equations. Cambridge, UK: Cambridge University Press, 2000.