A Bernstein-type theorem for $xi$ -submanifolds with flat normal bundle in the Euclidean spaces

A Bernstein-type theorem for $xi$ -submanifolds with flat normal bundle in the Euclidean spaces

$xi$ -Submanifolds in the Euclidean spaces are a natural extension of self-shrinkers and a generalization of$lambda$-hypersurfaces. Moreover, $xi$ -submanifolds are expected to take the place of submanifolds with parallel mean curvaturevector. In this paper, we establish a Bernstein-type theorem for $xi$ -submanifolds in the Euclidean spaces. More precisely,we prove that an n-dimensional smooth graphic $xi$ -submanifold with flat normal bundle in $mathbb{R}^{n+p}$ is an affine n-plane.

___

  • [1] Bernstein S. Sur un théorème de géométrie et ses application aux equations aux dérivées partielles du type elliptique. Comm de la Soc Math de Kharkow (2-ée Ser) 1915-1917; 15: 38-45 (in French).
  • [2] Chen BY, Piccinni P. Submanifolds with finite type Gauss map. Bull Aust Math Soc 1987; 35: 161-186.
  • [3] Cheng QM, Wei GX. Complete -hypersurfaces of weighted volume-preserving mean curvature flow. arXiv: 1403.3177.
  • [4] Cheng X, Zhou D. Volume estimate about shrinkers. P Am Math Soc 2013; 141: 687-696.
  • [5] Colding TH, Minicozzi II WP. Generic mean curvature flow I: generic singularities. Ann Math 2012; 175: 755-833.
  • [6] Ding Q, Xin YL. Volume growth, eigenvalue and compactness for self-shrinkers. Asia J Math 2013; 17: 443-456.
  • [7] Jost J, Xin YL. Bernstein type theorems for higher codimension. Calc Var Partial Diff 1999; 9: 277-296.
  • [8] Lawson HB, Osserman R. Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math 1977; 139: 1-17.
  • [9] Li XX, Chang XF. A rigidity theorem of -submanifolds in C2 . Geom Dedicata 2016; 185: 155-169.
  • [10] Li XX, Li ZP. Variational characterizations of -submanifolds in the Eulicdean space Rm+p . arXiv: 1612.09024.
  • [11] Luo Y. A Bernstein type theorem for graphic self-shrinkers with flat normal bundle. arXiv: 1204.4057v1.
  • [12] McGonagle M, Ross J. The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space. Geom Dedicata 2015; 178: 277-296.
  • [13] Schoen R, Simon L, Yau ST. Curvature estimates for minimal hypersurfaces. Acta Math 1975; 134: 275-288.
  • [14] Simons J. Minimal varieties in Riemannian manifolds. Ann Math 1968; 88: 62-105.
  • [15] Smoczyk K, Wang G, Xin YL. Bernstein type theorems with flat normal bundle. Calc Var Partial Diff 2006; 26: 57-67.
  • [16] Wang L. A Bernstein type theorem for self-similar shrinkers. Geom Dedicata 2011; 151: 297-303.