Academic Researches Index
EN
Dergiler Duyurular İstatistikler Standartlar Hakkımızda İletişim
  1. Turkish Journal of Mathematics
  2. Arşiv
  3. 2019
  4. Cilt: 43 - Sayı: 5
  5. 2561 -2567
Nai-juan DENG, Dan-yao WU, Ping-zhi YUAN

109139

The exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$

Let $a,\ m$ be positive integers such that $am\not\equiv0\pmod{3}, 2\nmid a$, and $a>3$. We prove that the exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$ has only the positive integer solution $(x,y,z)=(1,1,2)$.
Keywords:

Diophantine equation, positive integer solution, Fibonacci number,

PDF
Turkish Journal of Mathematics-Cover
  • ISSN: 1300-0098
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Arşiv
Sayıdaki Diğer Makaleler

Zahide Ok BAYRAKDAR, Tuna BAYRAKDAR

Urtzi BUIJS, Antonio GARVIN, Aniceto MURILLO

Arzu AKGÜL, Fethiye Müge SAKAR

Existence of solutions of BVPs for impulsive fractional Langevin equations involving Caputo fractional derivatives

Yuji LIU, Ravi AGARWAL

Nursel EREY

A remark on a paper of P. B. Djakov and M. S. Ramanujan

Murat Hayrettin YURDAKUL, Elif UYANIK

The exponential Diophantine equation ${(3am^2-1)}^x+(a{(a-3)m^2+1)}^y=(am)^z$

Naijuan DENG, Danyao WU, Pingzhi YUAN

Lattice ordered semigroups and hypersemigroups

Niovi KEHAYOPULU

Hesam MAHZOON, Rahim KARGAR, Janusz SOKOL

Nurettin IRMAK

Academic Researches Index - FooterLogo
ACARINDEX Hakkında
İletişim
Başvuru Koşulları ve Standartlar
Sık Sorulan Sorular
Kurumsal Abonelik