[1] Abdalla, B., On the oscillation of q-fractional difference equations, Adv. Difference Equ., 2017:254(2017), 11 pp.
[2] Abdalla, B., Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives, Adv. Difference Equ., 2018:107(2018), 15 pp.
[3] Abdalla, B., Abdeljawad, T., On the oscillation of Hadamard fractional differential equations, Adv. Difference Equ., 2018:409(2018), 13 pp.
[4] Abdalla, B., Abdeljawad, T., On the oscillation of Caputo fractional differential equations with Mittag-Leffler nonsingular kernel, Chaos, Solitons and Fractals, 127(2019), 173–177.
[5] Abdalla, B., Abdeljawad, T., Oscillation criteria for kernel function dependent fractional dynamic equations, Discrete Contin. Dyn. Syst. Ser. S, 14(2021), 3337–3349.
[6] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57–66.
[7] Alzabut, J., Abdeljawad, T., Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl., 5(2014), 177–187.
[8] Anderson, D.R., Ulness, D.J., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10(2015), 109–137.
[9] Aslıyüce, S., Güvenilir, A.F., Zafer, A., Oscillation criteria for a certain class of fractional order integro-differential equations, Hacet. J. Math. Stat., 46(2017), 199-207.
[10] Aphithana, A., Ntouyas, S.K., Tariboon, J., Forced oscillation of fractional differential equations via conformable derivatives with damping term, Bound. Value Probl., 2019:47(2019), 16 pp.
[11] Atangana, A., Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons and Fractals, 102(2017), 396–406.
[12] Atangana, A., Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel:Theory and application to heat transfer model, Therm. Sci., 20(2016), 763–769.
[13] Bolat, Y., On the oscillation of fractional order delay differential equations with constant coefficients, Commun. Nonlinear Sci. Numer. Simul., 19(2014), 3988–3993.
[14] Chen, D.X., Oscillation criteria of fractional differential equations, Adv. Difference Equ., 2012:33(2012), 10 pp.
[15] Chen, D.X., Qu, P.X., Lan, Y.H., Forced oscillation of certain fractional differential equations, Adv. Difference Equ., 2013:125(2013), 10 pp.
[16] Grace, S.R., Agarwal, R.P., Wong, P.J.Y., Zafer, A., On the oscillation of fractional differential equations, Fract. Calc. Appl. Anal., 15(2012), 222–231.
[17] Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities, Cambridge University Press, 1988.
[18] Jarad, F., Abdeljawad, T., Alzabut, J., Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Special Topics, 226(2017), 3457–3471.
[19] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65–70.
[20] Kilbas, A.A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, 204, 2006.
[21] Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[22] Singh, J., Kumar, D., Baleanu, D., New aspects of fractional Biswas–Milovic model with Mittag–Leffler law, Math. Model. Nat. Phenom., 14(2019), 23 pp.
[23] Sudsutad, W., Alzabut, J., Tearnbucha, C., Thaiprayoon, C., On the oscillation of differential equations in frame of generalized proportional fractional derivatives, AIMS Math., 5(2020), 856–871.
[24] Zhou, Y., Ahmad, B., Chen, F., Alsaedi, A., Oscillation for fractional partial differential equations, Bull. Malays. Math. Sci. Soc., 42(2019), 449–465.
[25] Zhu, P., Xiang, Q., Oscillation criteria for a class of fractional delay differential equations, Adv. Difference Equ., 2018:403(2018), 11 pp.
TUBA AĞIRMAN AYDIN, Hüseyin KOCAYİĞİT
Some Characterizations of Spherical Indicatrix Curves Generated by Flc Frame
Süleyman ŞENYURT, Kebire Hilal AYVACI, Davut CANLI
Singular Minimal TranslationSurfaces in Euclidean Spaces Endowed with Semi-symmetric Connections
Mahmut Ergut, Ayla Erdur Kara, Muhittin Evren Aydin
Rauf AMİROV, Selma GÜLYAZ ÖZYURT
Hatice TAŞÇI, Serkan GÖNEN, Mehmet Ali BARIŞKAN, Gökçe KARACAYILMAZ, Birkan ALHAN, Ercan Nurcan YILMAZ