A Truncated V-Fractional Derivative in R n

Using the six parameters truncated Mittag-Leffler function, we introduce a convenient truncatedfunction to define the so-called truncated V-fractional derivative type. In this sense, we propose the derivativeof a vector valued function and define the V-fractional Jacobian matrix whose properties allow us to say that:the multivariable truncated V-fractional derivative type, as proposed here, generalizes the truncated V-fractionalderivative type and can be extended to obtain a truncated V-fractional partial derivative type. As applications, wediscuss and prove the order change associated with two indexes of two truncated V-fractional partial derivative typeand propose the truncated V-fractional Green theorem. Finally, we obtain the analytical solution of the V-fractionalheat equation and present a graphical analysis.

___

[1] Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13(1)(2015), 1–10.

[2] Baleanu, D., Machado, J. A. T., Luo, A. C., Fractional Dynamics and Control, Springer, New York, 2011.

[3] Diethelm, K., Fractional differential equations. Theory and numerical treatment. Scriptum, Institute of Computational Mathematics, Technical University of Braunschweig, 2003.

[4] Goz¨ utok, N. Y., G ¨ oz¨ utok, U., ¨ Multi-variable conformable fractional calculus, Filomat, 32(1)(2018), 45–53.

[5] Katugampola, U. N., A new fractional derivative with classical properties, arXiv preprint arXiv:1410.6535.

[6] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. and Appl. Math., 264(2014), 65–70.

[7] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[8] Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., Feliu-Batlle, V., Fractional-order systems and controls: fundamentals and applications, Springer-Verlag, London, 2010.

[9] Vanterler da C. Sousa, J., Capelas de Oliveira, E., M-fractional derivative with classical properties, arXiv:1704.08186 [math.CA], (2017).

[10] Vanterler da C. Sousa, J., Capelas de Oliveira, E., Mittag-Leffler functions and the truncated V-fractional derivative, Mediterr. J. Math., 14(6)(2017) 244.

[11] Vanterler da C. Sousa, J., Capelas de Oliveira, E., A new truncated M-fractional derivative unifying some fractional derivatives with classical properties, Inter. J. Anal. and Appl., 16(1)(2018), 83–96.

[12] Stewart, J., Calculus, Cengage Learning, Boston, 2015.