Local T0 Filter Convergence Spaces

In this paper, we characterize each of local T0 filter convergence spaces and investigate the relationships

___

  • Adamek, J., Herrlich, H., Strecker, G.E., Abstract and Concrete Categories, New York, USA: Wiley, 1990.
  • Baran, M., Separation properties, Indian J Pure Appl Math 23(1991), 333-341.
  • Baran, M., Altındis¸, H., T2-Objects in topological categories Acta Math Hungar, 71(1996), 41–48.
  • Baran, M., Separation properties in topological categories, Math Balkanica 10(1996), 39–48.
  • Baran, M., Completely regular objects and normal objects in topological categories, Acta Math Hungar 80(1998), 211–224.
  • Baran, M., T3 and T4 -objects in topological categories, Indian J Pure Appl Math. 29(1998), 59–69.
  • Baran, M. Kula, S., and Erciyes, A., T0 and T1 semiuniform convergence space, Filomat, 27(2013), 537–546.
  • Baran, T. M., Local T0 pseudo-quasi-semi metric spaces, Proceedings of 1st International Mediterranean Science and Engineering Congress (IMSEC 2016) Çukurova University, Congress Center, October 26-28, 2016, Adana / TURKEY, 286–291.
  • Birkho_, G., A new definition of limit, Bull. Amer. Math. Soc., 41(1935), 636.
  • Cartan, H., Filtres et ultrafiltres, CR Acad. Paris, 205(1937), 777–779.
  • Cartan, H., Theorie des filtres, CR Acad. Paris, 205(1937), 595–598.
  • Cook, H.C., and Fisher, H.R., On equicontinuity and continuous convergence, Math. Ann. 159(1965), 94–104.
  • Göhler, W., Convergence structures-historical remarks and the monadic approach, Bremen Mathematik Arbeitspapiere, 48(1997), 171–193.
  • Herrlich, H., Topological functors, Gen Topology Appl 4(1974), 125-142.
  • Johnstone, PT., Topos Theory, L.M.S Mathematics Monograph: No. 10 New York UAS; Academic Press, 1977.
  • Kent, D.C., Convergence functions and their related topologies, Fund. Math. 54(1964), 125–133.
  • Kowalsky, H.J., Beitr˜oge zur topologischen algebra, Math. Nachrichten 11(1954), 143–185.
  • Kula, M., A note on Cauchy spaces, Acta Math Hungar 133(2011), 14–32.
  • Lowen-Colebunders, E., Function Classes of Cauchy Continuous Maps, New York USA; Marcel Dekker Inc, 1989.
  • MacLane, S., Moerdijk I., Sheaves in Geometry and Logic, Springer- Verlag, 1992.
  • Mielke, M V., Separation axioms and geometric realizations, Indian JPure Appl Math 25(1994), 711–722.
  • Nel, L.D., Initially structured categories and cartesian closedness, Canadian J.Math., 27(1975), 1361–1377.
  • Preuss, G., Theory of Topological Structures, An Approach to Topological Categories, Dordrecht; D Reidel Publ Co, 1988.
  • Schwarz, F., Connections between convergence and nearness, Lecture Notes in Math. Springer-Verlag 719(1978), 345–354.