Nonparametric stability analysis in multi-environment trial of canola

Nonparametric stability analysis in multi-environment trial of canola

Rapeseed is the world s second most important source of vegetable oils. Development of genotypes having highseed yield with stable performance is of paramount importance. In the present investigation seventeengenotypes were grown at seven locations during two growing seasons in semi-cold regions of Iran. Datarecorded on seed yield were subjected to different nonparametric measures which do not requiredistributional assumptions. Results of nonparametric tests of G, E and GE interaction and a combinedANOVA across environments showed there w ere both cross over and non-cross over interactions for G and Eand only non-cross over type for GE interaction. In this study, high values of Top (proportion of environmentsin which a genotype ranked in the top third) and mean of rank were associated with high mean yield. HoweverRank-sum measure was successful to detect genotypes showing simultaneous high yield and yield stability.Cluster analysis and principal component (PC) analysis help to group genotypes and measures and theyrevealed association among different statistics. Finally, among nonparametric measures, Top, Si(1) and Rank-sum statistics of nonparametric procedures were found to be useful in detecting the stability of the genotypes .According to these parameters Geronimo was found as stable and high yield canola genotype.

___

  • Akcura, M., Y. Kaya and S. Taner. 2009. Evaluation of durum wheat genotypes using parametric and nonparametric stability statistics. Turk J Field Crops 14: 111 -122.
  • Alagarswamy, G. and S. Chandra. 1998. Pattern analysis of international sorghum multi-environment trials for grain - yield adaptation. Theoretical and Applied Genetics 96: 397 - 405.
  • Anonymus. 2012. FAO - Trade and Markets Division. Food Outlook, Oilseeds market summary .
  • Anonymus. 2011. Agricultural Ministry Statistics of Iran, Agricultural products outlook, Oilseeds summary.
  • Azzalini, A. and D.R. Cox. 1984. Two new tests associated with analysis of variance. Journal of the Royal Statistical Society. Series B (Methodological): 335 -343.
  • Baker, R.J. 1988. Tests for crossover genotype-environmental interactions. Canadian Journal of Plant Science 68: 405 -410.
  • Balalić, I. and M. Zorić. 2013. Non -Parametric Stability Analysis of Sunflower Multi-Location Trials. 314 -330.
  • Balalić, I., M. Zorić, V. Miklič, N. Dušanić, S. Terzić and V. Radić. 2011. Non -parametric stability analysis of sunflower oil yield trials. Helia 34: 67 -77.
  • Becker, H.C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica 30: 835 -840.
  • Becker, H.C. and J. Leon. 1988. Stability analysis in plant breeding. Plant Breeding 101: 1 -23.
  • Bredenkamp, J. 1974. The nonparametric examination of interactions. Psychologische Beitrage 16: 398 -416.
  • Ceccarelli, S. 2000. Decentralized -participatory plant breeding: adapting crops to environments and clients. In Decentralized -participatory plant breeding: adapting crops to environ ments and clients, Proceedings of the 8th Int. Barley Genetics Symposium, Adelaide, 159 -166.
  • Ceccarelli, S. and S. Grando. 1991. Selection environment and environmental sensitivity in barley. Euphytica 57: 157 -167.
  • Crossa, J., P.N. Fox, W.H. Pfeiffer, S. Rajaram and H.G. Gauch. 1991. AMMI adjustment for statistical analysis of an international wheat yield trial. Theoretical and Applied Genetics 81: 27 -37.
  • Dehghani, H. . 2008. Estimating yield stability by nonparametric stability analysis in maize (Zea may s L.). Plant Breeding and Seed Science 58: 61 -77.
  • Delic, N., G. Stankovic and K. Konstantinov. 2009. Use of non parametric statistics in estimation of genotypes stability. Maydica 54: 155.
  • Duarte, J. B. and M. Zimmermann. 1995. Correlation among yield stability parameters in common bean. Crop Science 35: 905 -912.
  • FAOSTAT. 2010. (http://www.fao.org/corp/statistics/en/). Food and Agriculture Organisation of the United Nations.
  • Flores, F., M.T. Moreno and J.I. Cubero. 1998. A comparison of univariate and mu ltivariate methods to analyze G× E interaction. Field Crops Research 56: 271 -286.
  • Fox, PN, B Skovmand, BK Thompson, HJ Braun and R Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57 -64.
  • Gauch, HG and R.W. Zobel. 1997. Identifying mega- environments and targeting genotypes. Crop Science 37: 311 -326.
  • Hildebrand, H. 1980. Asymptotisch verteilungsfreie Rangtests in linearen Modellen. Medizinische Informatik und Statistik 17: 344 -349.
  • Huehn, M. 1996. Nonparametric analysis of genotype x environment interactions by ranks. Genotype by environment interaction. CRC Press, Boca Raton, FL: 213 - 228.
  • Huehn, M. 1990a. Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica 47: 189 -194.
  • Huehn, M. 1990b. Nonparametric measures of phenotypic stability. Part 2: Applications. Euphytica 47: 195 -201.
  • Hühn, M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med Biol 10: 112 -117.
  • Hühn, M. and J. Léon. 1995. Nonparametric analysis of cultivar performance trials: experimental results and comparison of different procedures based on ranks. Agronomy journal 87: 627 -632.
  • Hühn, M. and R. Nassar. 1989. On tests of significance for nonparametric measures of phenotypic stability. Biometrics: 997 -1000.
  • Hussein, M. A., A. Bjornstad and A.H. Aastveit. 2000. SASG× ESTAB: a SAS program for computing genotype× environment stability statistics. Agronomy journal 92: 454 - 459.
  • Kang, M.S. 2002. 15 Genotype –Environment Interaction: Progress and Prospects. In: Quantitative genetic s, genomics, and plant breeding , ed. Kang, M.S., 219 , CABI Publication, New York.
  • Kang, M.S. 1988. A rank-sum method for selecting high - yielding, stable corn genotypes. Cereal Res. Commun 16: 113 -115.
  • Kang, M.S. and H.N. Pham. 1991. Simultaneous selection for high yielding and stable crop genotypes. Agronomy journal 83: 161 -165.
  • Karimizadeh, R., M. Mohammadi, N. Sabaghnia and M.K. Shefazadeh. 2012. Using different aspects of stability concepts for interpreting genotype by environment interaction of some lentil genotypes. Aust. J. Crop Sci 6: 1017 -1023.
  • Karimzadeh, R., M. Mohammadi, N. Sabaghnia, M.K. Shefazadeh, T. Hosseinpour and M. Armion. 2013. Exploring of genotype by environment interaction by nonparametric stability procedures. N atura montenegrina 12: 181 -204.
  • Kaya, Y. and S. Taner. 2003. Estimating genotypic ranks by nonparametric stability analysis in bread wheat (Triticum aestivum L.). Journal of Central European Agriculture 4: 47 - 54.
  • Kroon, J. and P. Laan. 1981. Distribution ‐free test procedures in two ‐ way layouts; a concept of rank‐interaction. Statistica Neerlandica 35: 189 -213.
  • Kubinger, K.D. 1986. A Note on Non ‐Parametric Tests for the Interaction in Two ‐Way Layouts. Biometrical Journal 28: 67 -72.
  • Lu, H.Y. 1995. PC-SAS program for estimating Huehn's nonparametric stability statistics. Agronomy journal 87: 888 - 891.
  • Mahtabi, E., E. Farshadfar and M.M. Jowkar. 2013. Non parametric estimation of phenotypic stability in Chickpea (Cicer arietinum L.). International Journal of Agriculture and Crop Sciences 5: 888 -895.
  • Mekbib, F. 2003. Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 130: 147 -153.
  • Mohammadi, R., A. Abdulahi, R. Haghparast, M. Aghaee and M. Rostaee. 2007. Nonparametric methods for evaluating of winter wheat genotypes in multi-environment trials. World Journal of Agricultural Sciences 3: 137 -242.
  • Nassar, R. and M. Huehn. 1987. Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics: 45 -53.
  • Sabaghnia, N., H. Dehghani, B. Alizadeh and M. Mohghaddam. 2010. Interrelationships between seed yield and 20 related traits of 49 canola (Brassica napus L.) genotypes in non - stressed and water-stressed environments. Spanish Journal of Agricultural Research 8: 356 -370.
  • Sabaghnia, N., H. Dehghani and S.H. Sabaghpour. 2006. Nonparametric methods for interpreting genotype× environment interaction of lentil genotypes. Crop Science 46: 1100 -1106.
  • Sabaghnia, N., R. Karimizadeh and M. Mohammadi. 2012. The use of corrected and uncorrected nonparametric stability measurements in durum wheat multi-environmental trials. Spanish Journal of Agricultural Research 10: 722 -730.
  • Sabaghnia, N., S.H. Sabaghpour and H. Dehghani. 2008. The use o f an AMMI model and its parameters to analyse yield stability in multi-environment trials. The Journal of Agricultural Science 146: 571 -581.
  • Scapim, C.A., V.R. Oliveira, C.D. Cruz, C.A.B. Andrade and M.C.G. Vidigal. 2000. Yield stability in maize (Zea may s L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics and Molecular Biology 23: 387 -393.
  • Segherloo Ebadi, A. , S.H. Sabaghpour, H. Dehghani and M. Kamrani. 2008. Non -parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica 162: 221 -229.
  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 28: 237 -245.
  • Steel, R.G.D. and J.H. Torrie 1980. Principles and procedures of statistics, a biometrical approach: McGraw -Hill Kogakusha, Ltd.
  • Stroup, W.W., P.E. Hildebrand, C.A. Francis, J. Ragland and R. Lal 1993. Farmer participation for more effective research in sustainable agriculture. In Farmer partic ipation for more effective research in sustainable agriculture, Technologies for sustainable agriculture in the tropics: Proceedings of two international symposia held in San Antonia, TX and Denver, CO, 1990 and 1991 respectively., 153 -186: American Society of Agronomy (ASA).
  • Thennarasu, K. 1995. On Certain Non -Parametric Procedures For Studying Genotype-Environmentinteractions. And Yield Stability, IARI, Division of Agricultural Statistics: New Delhi.
  • Truberg, B. and M. Hühn. 2002. Contributions to the ana lysis of genotype× environment interactions: Experimental results of the application and comparison of clustering techniques for the stratification of field test sites. Journal of Agronomy and Crop Science 188: 113 -122.
  • Yan, W and MS Kang 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists CRC Press.
  • Yan, W., M.S. Kang, B. Ma, S. Woods and P.L. Cornelius. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47: 643 -655.
  • Yau, S.K. 1995. Regression and AMMI analyses of genotype× environment interactions: An empirical comparison. Agronomy journal 87: 121 -126.
  • Yue, G.L., K.L. Roozeboom, W.T. Schapaugh and G.H. Liang. 1997. Evaluation of soybean cultivars using parametric and nonparametric stability es timates. Plant Breeding 116: 271 - 275.
  • Zali, H., E. Farshadfar and H. Sabaghpour. 2011. Non - parametric analysis of phenotypic stability in chickpea (Cicer arietinum L.) genotypes in Iran. Crop Breeding Journal 1: 85 -96.
  • Živanović, T., G. Branković, M. Zorić, G.Š. Momirović, S. Janković, S. Vasiljević and J. Pavlov. 2012. Effect of recombination in the maize breeding population with exotic germplasm on the yield stability. Euphytica 185: 407 -417.