MOLECULAR CLONING AND SEQUENCE ANALYSIS OF RIBOSOMAL PROTEIN GENES IN MAIZE

MOLECULAR CLONING AND SEQUENCE ANALYSIS OF RIBOSOMAL PROTEIN GENES IN MAIZE

Ribosomal proteins are the essential components of ribosome, playing an important role in cell, involved protein synthesis and some other enzyme activities. In the current study, five ribosomal protein genes were successfully cloned from the maize (Zea mays L.) inbred line Southern 202 with reverse transcription polymerase chain reaction (RT-PCR) strategy. All of them were sequenced and analyzed preliminarily. The results showed that the complete coding regions of RPS9, RPS10, RPS14, RPS16 and RPS18 genes encode mature proteins with 193, 179, 150, 148 and 152 amino acids (AA), respectively. Bioinformatics analysis using the related data within NCBI/GenBank indicated that these sequences share high similarities at both DNA and protein levels. But same gene not only can encode different AA in the different variety in same species, but the number of encoded AA residues is probably different. Whereas in animals especially mammalian, the DNA and protein sequences of ribosomal protein genes have higher coincidence, and the number of AA residues encoded is very stable. The knowledge stated here could be beneficial for maize breeding programs and studying the functions of ribosomal proteins

___

  • Ajuh, P., B. Kuster, K. Panov, J.C. Zomerdijk, M. Mann and A.I. Lamond, 2000. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 19: 6569-6581.
  • Arnold, R.J. and J.P. Reilly, 1999. Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal. Biochem. 269: 105-112.
  • Figueroa, P., L. Holuigue, A. Araya and X. Jordana, 2000. The nuclear-encoded SDH2-RPS14 precursor is proteolytically processed between SDH2 and RPS14 to generate maize mitochondrial RPS14. Biochem. Biophys. Res. Commun. 271: 380-385.
  • Hamacher, K., J. Trylska and J.A. McCammon, 2006. Dependency map of proteins in the small ribosomal subunit. PLoS Comput. Biol. 2: e10.
  • Kenmochi, N., T. Kawaguchi and S. Rozen, 1998. A map of 75 human ribosomal protein genes. Genome Res. 8: 509-523.
  • Knoop, V., T. Ehrhardt, K. Lättig and A. Brennicke, 1995. The gene for ribosomal protein S10 is present in mitochondria of pea and potato but absent from those of Arabidopsis and Oenothera. Curr. Genet. 27: 559-564.
  • Kubo, N., X. Jordana, K. Ozawa, S. Zanlungo, K. Harada, T. Sasaki and K. Kadowaki, 2000. Transfer of the mitochondrial rps10 gene to the nucleus in rice: acquisition of the 5' untranslated region followed by gene duplication. Mol. Gen. Genet. 263: 733-739.
  • Kusui, K., H, Sasaki, R. Adachi, S. Matsui, K. Yamamoto, T. Yamaguchi, T. Kasahara and K. Suzuki, 2004. Ribosomal protein S18 identified as a cofilin-binding protein by using phage display library. Mol. Cell. Biochem. 262: 187-193.
  • Lai, M.D. and J. Xu, 2007. Ribosomal proteins and colorectal cancer. Curr. Genomics 8: 43-49.
  • Lindström, M.S. and M. Nistér, 2010. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One 5: e9578.
  • Lindström, M.S. and Y. Zhang, 2008. Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J. Biol. Chem. 283: 15568-15576.
  • Majewski, P., M. Wołoszyńska and H. Jańska, 2009.
  • Developmentally early and late onset of Rps10 silencing in Arabidopsis thaliana: genetic and environmental regulation. J. Exp. Bot. 60: 1163-1178.
  • Maroniche, G.A., M. Sagadín, V.C. Mongelli, G.A. Truol and M. del Vas, 2011. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virol. J. 8: e308.
  • Mishra-Gorur, K., H.A. Singer and J.J.Jr. Castellot, 2002. The S18 ribosomal protein is a putative substrate for Ca2+/calmodulin-activated protein kinase II. J. Biol. Chem. 277: 33537-33540.
  • Murcha, M.W., C. Rudhe, D. Elhafez, K.L. Adams, D.O. Daley and J. Whelan, 2005. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. Plant Physiol. 138: 2134-2144.
  • Oliva, E.N., M. Cuzzola, F. Nobile, F. Ronco, M.G. D'Errigo, C. Laganà, F. Morabito, S. Galimberti, A. Cortelezzi, M.A. Aloe Spiriti, G. Specchia, A. Poloni, M. Breccia, R. Ghio, C. Finelli, P. Iacopino, G. Alimena and R. Latagliata, 2010.
  • Changes in RPS14 expression levels during lenalidomide treatment in Low- and Intermediate-1-risk myelodysplastic syndromes with chromosome 5q deletion. Eur. J. Haematol. 85: 231-235.
  • Pnueli, L. and Y. Arava, 2007. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9. BMC Genomics 8: e285.
  • Sandoval, P., G. León, I. Gómez, R. Carmona, P. Figueroa, L. Holuigue, A. Araya and X. Jordana, 2004. Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324: 139-147.
  • Warner, J.R. and K.B. McIntosh, 2009. How common are extraribosomal functions of ribosomal proteins? Mol. Cell 34: 3-11.
  • Wen, Z.M., 2002. Recurrent selection in maize strain population. Journal of Maize Sciences 10(2): 11-13.
  • Wood, A.J., R. Joel Duff and M.J. Oliver, 2000. The translational apparatus of Tortula ruralis: polysomal retention of transcripts encoding the ribosomal proteins RPS14, RPS16 and RPL23 in desiccated and rehydrated gametophytes. J. Exp. Bot. 51: 1655-1662.
  • Wool, I.G., 1996. Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165.
  • Yazaki, M., M. Kamei, Y. Ito, Y. Konno, R. Wang, T. Toki and E. Ito, 2012. A novel mutation of ribosomal protein s10 gene in a Japanese patient with diamond-blackfan anemia. J. Pediatr. Hematol. Oncol. 34: 293-295.
  • Zhou, X., Q. Hao, J. Liao, Q. Zhang and H. Lu, 2013. Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 32: 388-396.