Comparison of Ammi, Parametric and Non-Parametric Models in Identifying High-Yielding and Stable Oilseed Rape Genotypes

Comparison of Ammi, Parametric and Non-Parametric Models in Identifying High-Yielding and Stable Oilseed Rape Genotypes

One of the complex issue in the way of releasing new high-yielding and stable oilseed rape ‎cultivars is genotype by environment interaction (GEI) which reduce selection efficiency. In ‎the current study, parametric and non-parametric statistics as well as the AMMI model have ‎been compared to identify the best stability models to clarify GEI complexity. The ‎experiment has been conducted in the warm regions of Iran including; Gorgan, Sari, Zabol, ‎and Hajiabad during two cropping seasons (2016-2017 and 2017-2018) for 16 genotypes in a ‎randomized complete block design with three replications. The AMMI analysis of variance on ‎grain yield showed the significant effects of genotype, environment, and the interaction ‎effects of GEI on yield. Based on the AMMI ANOVA, the major contribution of GEI was ‎captured by the first and second interaction principal component axes (IPCA1 and IPCA2) ‎which explained 34.29% and 29.81% of GEI sum of the square, respectively. Additionally, ‎Different parametric and non-parametric stability methods including; bi, S2di, CVi, W2i, σ2i, Pi, ‎Si(1), Si(2), Si(3), Si(6), Npi(1), Npi(2), Npi(3), Npi(4), KR and TOP have also investigated. Based on ‎AMMI, parametric, and non-parametric stability statistics, genotypes G2 (SRL-95-7) and G9 ‎‎(SRL-95-16)‎‏ ‏were selected as the stable and high-yielding genotypes. Likewise, Principal ‎component analysis based on rank correlation matrix enabled us to distinguish high-yielding ‎genotypes to stable (high-yielding genotypes in various environments) and unstable (high-‎yielding genotypes in low-yielding environments) ones. Furthermore, a significant Spearman ‎correlation was observed between yield mean and GSI, Pi, Si(3), Si(6), Npi(3), Npi(4), and KR. ‎Therefore, different efficient strategies were identified in this study‏ ‏and since we looked up ‎high-yielding and stable genotypes, G2 (SRL-95-7) and G9 (SRL-95-16)‎‏ ‏were finally ‎selected.‎

___

  • Agahi K., J. Ahmadi, H.A. Oghan, M.H. Fotokian, S.F. Orang. 2020. Analysis of genotype× ‎environment interaction for seed yield in spring oilseed rape using the AMMI model. ‎Crop Breed. Appl. Biotechnol. 20‎
  • Becker H., J. Leon. 1988. Stability analysis in plant breeding. Plant breed. 101:1-23‎
  • Bocianowski J., A. Liersch, K. Nowosad. 2020. Genotype by environment interaction for ‎alkenyl glucosinolates content in winter oilseed rape (Brassica napus L.) using additive ‎main effects and multiplicative interaction model. Curr. Plant Biol. 100137‎
  • Brandiej E., B. Meverty. 1994. Genotype× environmental interaction and stability of seed yield ‎of oil rapeseed. Crop Sci. 18:344-353‎
  • Carbonell S.A.M., J.A.d. Azevedo Filho, L.A.d.S. Dias, A.A.F. Garcia, L.K.d. Morais. 2004. ‎Common bean cultivars and lines interactions with environments. Scientia Agricola. ‎‎61:169-177‎
  • Eberhart S.t., W. Russell. 1966. Stability parameters for comparing varieties 1. Crop science ‎‎6:36-40‎
  • FAO. 2018. Food and Agriculture Organization of the United Nations, Food and Agricultural ‎Commodities Production. Available ongenotype: http://www.fao.org/statistics/en . ‎
  • Fox P., B. Skovmand, B. Thompson, H.-J. Braun, R. Cormier. 1990. Yield and adaptation of ‎hexaploid spring triticale. Euphytica 47:57-64‎
  • Francis T., L. Kannenberg. 1978. Yield stability studies in short-season maize. I. A descriptive ‎method for grouping genotypes. Can. J. Plant Sci. 58:1029-1034‎
  • Gauch Jr H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop science ‎‎46:1488-1500‎
  • Getahun A. 2017. Adaptability and stability analysis of groundnut genotypes using AMMI ‎model and GGE-biplot. J. crop sci. biotech. 20:343-349‎
  • Huehn M. 1990. Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica ‎‎47:189-194‎
  • Huehn M. 1990. Nonparametric measures of phenotypic stability. Part 2: Applications. ‎Euphytica 47:195-201‎
  • Hühn M., R. Nassar. 1989. On tests of significance for nonparametric measures of phenotypic ‎stability. Biometrics:997-1000‎
  • Kang M. 2004. Breeding: genotype by environment interaction. In ‘Encyclopedia of plant and ‎crop science’.(Ed. RM Goodman) pp. 218–221Marcel Dekker: New York.‎
  • Kempton R. 1984. The use of biplots in interpreting variety by environment interactions. J. ‎Agri. Sci. 103:123-135‎
  • Lin C.-S., M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar× ‎location data. Can. J. Plant Sci. 68:193-198‎
  • Lin C.-S., M.R. Binns, L.P. Lefkovitch. 1986. Stability Analysis: Where Do We Stand? 1. Crop ‎Sci. 26:894-900‎
  • Lobell D.B., S.M. Gourdji. 2012. The influence of climate change on global crop productivity. ‎Plant Physiol. 160:1686-1697‎
  • Marjanović-Jeromela A., N. Nagl, J. Gvozdanović-Varga, N. Hristov, A. Kondić-Špika, M.V.R. ‎Marinković. 2011. Genotype by environment interaction for seed yield per plant in ‎rapeseed using AMMI model. Pesquisa Agropecuária Brasileira 46:174-181‎
  • Nowosad K., A. Liersch, W. Poplawska, J. Bocianowski. 2017. Genotype by environment ‎interaction for oil content in winter oilseed rape (Brassica napus L.) using additive main ‎effects and multiplicative interaction model. Indian J. Genet. Plant Breed. 77:293-297‎
  • Oghan H.A., N. Sabaghnia, V. Rameeh, H.R. Fanaee, E. Hezarjeribi. 2016. Univariate stability ‎analysis of genotype× environment interaction of oilseed rape seed yield. Acta ‎Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 64:1625-1634‎
  • Pacheco A., M. Vargas, G. Alvarado, F. Rodríguez, M. López, J. Crossa, J. Burgueño. 2016. ‎GEA-R (Genotype× Environment Analysis whit R for Windows.) Version 4.0 ‎International Maize and Wheat Improvement Center.‎
  • Pinthus M.J. 1973. Estimate of genotypic value: A proposed method. Euphytica 22:121-123‎
  • Pourdad S., M. Moghaddam, A. Faraji, H. Naraki. 2014. Study on different non-parametric ‎stability methods on seed yield of spring rapeseed varieties and hybrids. Iranian J. Field ‎Crop Sci. 44‎
  • Purchase J., H. Hatting, C. Van Deventer. 2000. Genotype× environment interaction of winter ‎wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. ‎South African J. Plant Soil. 17:101-107. DOI ‎https://doi.org/10.1080/02571862.2000.10634877‎
  • Resketo P., L. Szabo. 1992. The effect of drought on development and yield components of ‎soybean. Int. J. Trop. Agric. 8:347-354‎
  • Richards R. 1978. Genetic analysis of drought stress response in rapeseed (Brassica campestris ‎and B. napus). I. Assessment of environments for maximum selection response in grain ‎yield. Euphytica. 27:609-615‎
  • Roy D. 2000 Plant breeding: Analysis and exploitation of variation. Alpha Science Int'l Ltd.‎
  • Sabaghnia N., S. Sabaghpour, H. Dehghani. 2008. The use of an AMMI model and its ‎parameters to analyse yield stability in multi-environment trials. J. Agri. Sci. 146:571‎
  • Shukla G. 1972. Some statistical aspects of partitioning genotype environmental components of ‎variability. Heredity. 29:237-245‎
  • Soughi H., N.B. Jelodar, G. Ranjbar, M. Pahlevani. 2016. Simultaneous selection based on yield ‎and yield stability in bread wheat genotypes. J. Crop Breed. 8:119-125‎
  • Tabari H., H. Abghari, P. Hosseinzadeh Talaee. 2012. Temporal trends and spatial ‎characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol. ‎Process. 26:3351-3361‎
  • Tai G.C. 1971. Genotypic stability analysis and its application to potato regional trials. Crop ‎science 11:184-190‎
  • Tiiennarasu K. 1995. On Certain Non-Parametric Procedures For Studying Genotype-‎Environmentinteractions. And Yield StabilityIARI, Division of Agricultural Statistics: ‎New Delhi.‎
  • Torbaghan M.E., A. Mirzaee, M. Jamshid Moghaddam, M. Eskandari Torbaghan, A. Mirzaee. ‎‎2014. Analysis of genotype× environment interaction for seed yield in spineless ‎safflower (Carthamus tinctorius L.) genotypes. Crop Breed. J. 4:47-56‎
  • Warwick S., A. Francis, I. Al-Shehbaz. 2006. Brassicaceae: species checklist and database on ‎CD-Rom. Plant Syst. Evol. 259:249-258‎
  • Wricke G. 1962. Uber eine Methode zur Erfassung der okologischen Streubreite in ‎Feldverzuchen. Z pflanzenzuchtg 47:92-96‎
  • Wu W., B.L. Ma, J.K. Whalen 2018 Enhancing rapeseed tolerance to heat and drought stresses ‎in a changing climate: perspectives for stress adaptation from root system ‎architectureAdvances in Agronomy. Elsevier, pp. 87-157.‎
  • Yan W., M.S. Kang 2002 GGE biplot analysis: A graphical tool for breeders, geneticists, and ‎agronomists. CRC press
  • Yan W., M.S. Kang, B. Ma, S. Woods, P.L. Cornelius. 2007. GGE biplot vs. AMMI analysis of ‎genotype‐by‐environment data. Crop Sci. 47:643-653‎
  • Zali H., O. Sofalian, T. Hasanloo, A. Asghari. 2016. AMMI and GGE Biplot Analysis of Yield ‎Stability and Drought Tolerance in Brassica napus L. Agri. Commun. 4:1-8‎
  • Zobel R.W., M.J. Wright, H.G. Gauch Jr. 1988. Statistical analysis of a yield trial. Agron. J. ‎‎80:388-393‎
Turkish Journal Of Field Crops-Cover
  • ISSN: 1301-1111
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1996
  • Yayıncı: Tarla Bitkileri Bilimi Derneği
Sayıdaki Diğer Makaleler

POTENTIAL EFFECT OF BED-FURROW PLANTING IMPROVED THE WHEAT GRAINS PRODUCTIVITY UNDER DROUGHT STRESS

Javaiz ALAM, Hamid NAWAZ, Haseeb Ur REHMAN, Nazim HASSAİN, Malik Muhammad YOUSAF

CHANGE IN FORAGE QUALITY OF WHOLE PLANT, LEAF AND STEM ACCORDING TO SOWING AND HARVESTING PERIODS IN Atriplex nitens SCHKUHR GROWN WITHOUT FERTILIZER

Süleyman TEMEL, Bilal KESKİN, Zeynep GÜNER

EXAMINATION OF AGRO-PHYSIOLOGICAL TRAITS OF DIFFERENT CULTIVARS OF MAIZE (Zea Mays) WITH LEAF AND EAR TOPPING

Eshagh HOJATIPOUR, Hamid Reza MIRI, Barmak JAFARI HAGHIGHI, Hamid Reza EBRAHIMI, Abdolreza JAFARI

Irrigation and Phosphorus Management of Alfalfa Under Semi-Arid Conditions

Şule ERKOVAN, Onur İLERİ, Halil İbrahim ERKOVAN, Ali KOÇ

Yield and Fiber Quality Characteristics of Some Cotton (Gossypium hirsutum L.) Cultivars Grown in the Southeastern Anatolian Conditions

Ramazan ASLAN, Yusuf Ziya AYGÜN, Mehmet MERT

GRAIN YIELD AND NUTRITIONAL QUALITY OF DIFFERENT RYE GENOTYPES

Uğur BAŞARAN, Erdem GÜLÜMSER, Yusuf Murat KARDEŞ, Medine ÇOPUR DOĞRUSÖZ, Hanife MUT

THE EFFECTS OF SOWING DESIGNS ON FORAGE YIELD AND QUALITY OF SWEET SORGHUM AND MUNG BEAN MIXTURES UNDER MEDITERRANEAN CONDITIONS

İbrahim ERTEKİN, Şaban YILMAZ

COMPARISON OF SYNTHETIC HEXAPLOID WHEAT LINES FOR RESISTANCE TO ROOT ROT (Fusarium spp)

İsmet BAŞER, Feyza TAHAN ÇAY, Damla BALABAN GÖÇMEN

A BREEDING STUDY TO DEVELOP EARLY MATURING SOYBEAN CROSSES SUITABLE FOR DOUBLE CROPPING

Aliye YILDIRIM, Emre İLKER, Doç. Dr. Sıdıka EKREN, İlkay YAVAŞ, Dünya ISAYEVA, Özer Hakan BAYRAKTAR

INHERITANCE OF PLANT HEIGHT IN EINKORN WHEAT BY RESULTS OF SEGREGATION ANALYSIS

Hao FU, роман БОГУСЛАВСЬКИЙ, Liubov ATRAMENTOVA