Wavefront-ray grid FDTD algorithm

Wavefront-ray grid FDTD algorithm

A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Numerical simulations for a vertical electrical dipole have been conducted to demonstrate the benefits of the proposed method. Results have been compared with those of the spherical FDTD algorithm and it is showed that numerical grid anisotropy can be reduced highly by WRG-FDTD.

___

  • [1] Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE T Antenn Propag 1966; 14: 302-307.
  • [2] Taflove A, Hagness SC. Computational Electrodynamics–The Finite Difference Time Domain Method. 3rd ed. Boston, MA, USA: Artech House, 2005.
  • [3] Farjadpour A, Roundy D, Rodriguez A, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG, Burr GW. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt Lett 2006; 31: 2972-2974.
  • [4] Holland R. Finite difference solution of Maxwell’s equations in generalized non-orthogonal coordinates. IEEE T Nucl Sci 1983; 30: 4589-4591.
  • [5] Stratton JA. Electromagnetic Theory. New York, NY, USA; McGraw-Hill, 1941.
  • [6] Fusco M. FDTD algorithm in curvilinear coordinates. IEEE T Antenn Propag 1990; 38: 76-89.
  • [7] Fusco M, Smith MV, Gordon LW. Three-dimensional FDTD algorithm in curvilinear coordinates. IEEE T Antenn Propag 1991; 39: 1463-1471.
  • [8] Lee JF, Palandech R, Mittra R. Modeling three-dimensional discontinuities in waveguides using nonorthogonal FDTD algorithm. IEEE T Microw Theory 1992; 40: 346-352.
  • [9] Jurgens TG, Taflove A, Umashankar KR, Moore TG. Finite difference time domain modelling of curved surfaces. IEEE T Antenn Propag 1992; 40: 357-366.
  • [10] Hao Y, Railton CJ. Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes. IEEE T Microw Theory 1998; 46: 82-88.
  • [11] Gedney S, Lansing FS, Rascode DL. Full wave analysis of microwave monolithic circuit devices using a generalized Yee algorithm based on an unstructured grid. IEEE T Microw Theory 1996; 44: 1393-1400.
  • [12] Krumpholz M, Katehi LPB. MRTD: New time domain schemes based on multiresolution analysis. IEEE T Microw Theory 1997; 45: 385-393.
  • [13] Liu QH. The PSTD algorithm: a time domain method requiring only two cells per wavelength. Microw Opt Technol Lett 1997; 1: 158-165.
  • [14] Wang S, Teixeira FL. A three-dimensional angle-optimized finite difference time domain algorithm. IEEE T Microw Theory 2003; 51: 811-817.
  • [15] Zygridis TT, Tsiboukis TD. Development of higher order FDTD schemes with controlled dispersion error. IEEE T Antenn Propag 2005; 53: 2952-2960.
  • [16] Zhang XQ, Nie ZP, Xia MY, Qu SW, Li YH. Novel FDTD method with low numerical dispersion and anisotropy. In: PIERS Proceedings; 20–23 March 2011; Marrakesh, Morocco. pp. 718-721.
  • [17] Kong Y, Chu Q, Li R. Two efficient unconditionally stable four stages split step FDTD methods with low numerical dispersion. PIER B 2013; 48: 1-22.
  • [18] Liu Y. Fourier analysis of numerical algorithms for the Maxwell equations. J Comput Phys 1996; 124: 396-416.
  • [19] Navarro EA, Wu C, Chung PY, Litva J. Some considerations about the finite difference time domain method in general curvilinear coordinates. IEEE Microw Guided W 1994; 4: 396-398.
  • [20] Ray SL. Numerical dispersion and stability characteristics of time-domain methods on nonorthogonal meshes. IEEE T Antenn Propag 1993; 41: 233-235.
  • [21] Nilavalan R, Craddock IJ, Railton CJ. Quantifying numerical dispersion in non-orthogonal FDTD meshes. IEE P-Microw Anten P 2002; 149: 23-27.
  • [22] Ciydem M, Koc S. FDTD algorithm on wavefront-ray grid for wave propagation. In: IEEE APS/URSI Symposium; July 2006; Albuquerque, NM, USA. pp. 3821-3824.
  • [23] Holland R. THREDS: A finite-difference time-domain EMP code in 3D spherical coordinates. IEEE T Nucl Sci 1983; 3: 4592-4595.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Optimal power flow by considering system security cost and small signal stability constraints

Mohammad SARVI, Mohammad Reza SALIMIAN

Classification of short-circuit faults in high-voltage energy transmission line using energy of instantaneous active power components-based common vector approach

Mehmet YUMURTACI, Gökhan GÖKMEN, Semih ERGİN, Osman KILIÇ, Çağrı KOCAMAN

Grid-connected induction generator interturn fault analysis using a PCA-ANN based algorithm

Umit Kemalettin TERZi, Haydar BAYAR

Fast and accurate semiautomatic haptic segmentation of brain tumor in 3D MRI images

Erhan İlhan KONUKSEVEN, Adnan ALTUN, Masoud LATIFI NAVID, Mustafa DOĞAN, Murat BİLEN

Site-specific design optimization of horizontal-axis wind turbine systems using PSO algorithm

Ulaş EMİNOĞLU

A classification of semantic conflicts in heterogeneous Web services at message level

Rodziah ATAN, Ibrahim Ahmed AL-BALTAH, Abdul Azim Abdul GHANI, Wan Nurhayati Wan RAHMAN AB

A new fuzzy membership assignment and model selection approach based on dynamic class centers for fuzzy SVM family using the firefly algorithm

Modjtaba ROUHANI, Omid ALMASI NAGHASH

A generalized design method for multifunction converters used in a photovoltaic system

Trung Nhan NGUYEN, An LUO

Application of kappa statistics in sequential tests for family-based design

Farid RAJABLI

An analytical formulation with ill-conditioned numerical scheme and its remedy: scattering by two circular impedance cylinders

Fatih DİKMEN, Emrah SEVER, Olga Alexandrovna SUVOROVA, Yury Alexandrovich TUCHKIN