Theoretical analysis of doping management and its effects on power scaling

Theoretical analysis of doping management and its effects on power scaling

Thermal load and nonlinear effects are two contrary phenomena that make up important drawbacks in rapid progress of high-power fiber lasers. To minimize the thermal load, which limits the average power, doping concentration should be decreased, which brings about increasing length of the fiber. In contrast, the presence of nonlinear effects and their management demand the use of high-doped, shorter fibers in order to maximize the peak power. Management on doping of gain fiber and obtaining a specific doping profile function along the short gain fiber is a proposed solution for prevention of the exchange between thermal load and nonlinear effects. The study shows two different approaches for keeping the temperature levels down in addition to obtaining power scaling profiles.

___

  • [1] Digonnet MJ. Rare-earth-doped fiber lasers and amplifiers revised and expanded. 2nd ed. New York, NY, USA: CRC Press, 2002.
  • [2] M¨uller HR, Kirchhof J, Reichel V, Unger S. Fibers for high-power lasers and amplifiers. CR Acad Sci II B 2006; 7/2: 154-162.
  • [3] Shiner B. The fibre laser: Delivering power. Nat Photonics 2010; 4/5: 290-290.
  • [4] Jauregui C, Limpert J, T¨unnermann A. High-power fibre lasers. Nat Photonics 2013; 7/11: 861-867.
  • [5] Jeong YC, Boyland AJ, Sahu JK, Chung SH, Nilsson J, Payne DN. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser. Journal of the Optical Society of Korea 2009; 13/4: 416-422.
  • [6] Smith AV, Do BT, Hadley GR, Farrow RL. Optical damage limits to pulse energy from fibers. IEEE J Sel Top Quant Elect 2009; 15/1: 153-158.
  • [7] Nilsson J, Jeong J, Codemard Y, Farrell CA, Vasquez C, Ji L, Abidin MSZ, van der Westhuizen G, Sahu JK. High power fibre lasers: Exploitation of unique properties. In: The European Conference on Lasers and Electro-Optics; 14-19 June 2009; Munich, Germany. OSA; pp. TF2 2.
  • [8] Varkey AV. Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology. PhD, University of Michigan, Ann Arbor, Michigan, USA, 2013.
  • [9] Tunnermann A, Limpert J, Nolte S. Industrial perspectives of ultrafast fiber lasers. In: CLEOE-IQEC 2007 International Quantum Electronics Conference of Lasers and Electro-Optics; 17-22 June 2007; Munich, Germany. NY, USA: IEEE. pp.1-1.
  • [10] Nilsson J. High Power Fiber Lasers. In: CLEO/ QELS Quantum Electronics and Laser Science Conference; 16-21 May 2010; San Jose, CA. NY, USA: IEEE. pp. CTuC1.
  • [11] Richardson DJ, Nilsson J, Clarkson WA. High power fiber lasers: current status and future perspectives [Invited]. JOSA B 2010; 27/11: B63-B92.
  • [12] Nilsson J, Clarkson WA, Selvas R, Sahu JK, Turner PW, Alam SU, Grudinin AB. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers. Opt Fiber Technol 2004; 10/1: 5-30.
  • [13] Jeong Y, Vazquez-Zuniga LA, Lee SJ, Choi G, Kwon Y, Kim Y. High-Power Fiber Lasers. IEEE 17th OptoElectronics and Communications Conference. 2-6 Jule 2012; Busan, South Korea. NY, USA: IEEE. pp. 580-581.
  • [14] Jeong Y, Nilsson J. Sahu JK, Dupriez P, Codemard CA, Soh DBS, Farrell C, Kim J, Richardson DJ, Payne DN. High Power Fiber Lasers. In: CLEO/Pacific Rim 2005 Optical Fiber Communication Conference; 30-02 August 2005; NY, USA: IEEE. pp. 1056-1058.
  • [15] Clarkson WA. Thermal effects and their mitigation in end-pumped solid-state lasers. J Phys D Appl Phys 2001; 34/16: 2381-2395.
  • [16] Li L, Li H, Qiu T, Temyanko VL, Morrell MM, Sch¨ulzgen A, Mafi A, Moloney JV, Peyghambarian N. 3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers. OSA. Opt Express 2005; 13/9: 3420-3428.
  • [17] Sahu JK, Jeong Y, Richardson DJ, Nilsson J. A 103 W erbium–ytterbium co-doped large-core fiber laser. P Soc Photo-Opt Ins 2003; 227:159-163.
  • [18] Bowman SR. Lasers without internal heat generation. IEEE J Quantum Elect 1999; 35/ 1: 115-122.
  • [19] Ueda K. High Power Fiber Lasers. In: CLEO/ Pacific Rim 4th Conference of Lasers and Electro-Optics; 15-19 July 2001; Chiba, Japan. NY, USA: IEEE. pp. 486-487.
  • [20] Wang Y, Xu CQ, Po H. Pump arrangement for kilowatt fiber lasers. In: LEOS 2003 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 27-28 October 2003; NY, USA: IEEE. pp. 71-72.
  • [21] Liu X, Wang Y, Wang J, Zhang E, Xiong L, Zhao W. Development of diode lasers for pumping high power ultrashort pulse lasers. In: IEEE CLEO/PACIFIC RIM’09 Lasers and Electro-Optics Conference. 30-3 August 2009; Shanghai, China. NY, USA: IEEE. pp. 1-1.
  • [22] Zhu J, Zhou P, Ma Y, Xu X, Liu Z. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt Express 2011. 19/19: 18645-18654.
  • [23] Bowman SR, O’Connor SP, Biswal S, Condon NJ, Rosenberg A. Minimizing heat generation in solid-state lasers. IEEE J Quantum Elect 2010; 46/7: 1076-1085.
  • [24] Ashoori V, Shayganmanesh M, Radmard S. Heat generation and removal in solid state lasers. In: Salim NK. An Overview of Heat Transfer Phenomena, InTech, 2012. pp. 341-375.
  • [25] Konieczny P, Swiderski J, Zaj¸ac A, Skorczakowski M. Analysis of activation of active double-clad optical fibers. ´ Opt Appl 2005; 35/ 4, 955-968.
  • [26] Fan Y, He B, Zheng JZ, Dai S, Zhao C, Wei Y, Lou Q. Efficient heat transfer in high-power fiber lasers. Chin Opt Lett 2012; 10/11: 111401-111401.
  • [27] Gainov VV, Shaidullin RI, Ryabushkin OA. Steady-state heating of active fibres under optical pumping. Quant Elect 2011; 41/7: 637-643.
  • [28] Tunnermann A, Schreiber T, R¨oser F, Liem A, H¨ofer S, Zellmer H, Nolte S, Limpert J. The renaissance and bright future of fibre lasers. J Phys B-At Mol Opt 2005; 38/S: 681-693.
  • [29] Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Ebrehardt R, Tunnermann A. The rising power of fiber lasers and amplifiers. IEEE J Sel Top Quant Elect 2007; 13/3: 537-545.
  • [30] Brown DC, Hoffman HJ. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J Quantum Elect 2001; 37/2: 207-217.
  • [31] Yanming H, Cheo PK. Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers. IEEE Photonic Tech L 2004; 16/3: 759-761.
  • [32] Canat G, Jaou¨en Y. Evidence of thermal effects in high power Er 3+ -Yb 3+ fiber lasers. Opt Lett 2005; 30/22: 3030-3032.
  • [33] Li J, Duan K, Wang Y. Theoretical analysis of the heat dissipation mechanism in Yb +3 -doped double-clad fiber lasers. J Mod Optic 2007; 55/3: 459-471.
  • [34] Li P, Zhu C, Zou S, Zhao H, Jiang D, Li G, Chen M. Theoretical and experimental investigation of thermal effects in a high power Yb 3+ -doped double-clad fiber laser. OPT Laser Technol 2008; 40/2: 360-364.
  • [35] Liu T, Yang ZM, Xu SH. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser. Opt Express 2009; 17/15: 12875-12890.
  • [36] Ashoori V, Malakzadeh A. Explicit exact three-dimensional analytical temperature distribution in passively and actively cooled high-power fibre lasers. J Phys D Appl Phys 2011; 44/35: 1-6.
  • [37] Assad MEH, Brown DC. Thermodynamic analysis of end-pumped fiber lasers subjected to surface cooling. IEEE J Quantum Elect 2013; 49/1: 100-107.
  • [38] Elahi P, Yılmaz S, Ak¸caalan O, Kalaycıo˘glu H, ¨ Oktem B, S¸enel C¸, Ilday F ¨ O, Eken K. Doping management for ¨ high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier. Opt Lett 2012; 37/15: 3042-3044.
  • [39] Wang Y, Xu C, Po H. Thermal effects in kilowatt fiber lasers. IEEE Photonic Tech L 2004; 16/1: 63-65.
  • [40] Elahi P, Zare N. The analytical solution of rate equations in end-pumped fiber lasers with minimum approximation and temperature distribution during the laser operation. Acta Phys Pol A 2009; 116/4: 522-524.
  • [41] Liping Z, Liu H, Li X. Theoretical analysis of Yb 3+ -doped double-clad fiber lasers using a new analytical method. Optik-International Journal for Light and Electron Optics 2013; 124/12: 1264-1268.
  • [42] Liao X, Huang C. Optimization of Yb 3+ -doped double-clad fiber lasers using a new approximate analytical solution. Opt Laser Technol 2011; 43/1: 55-61.
  • [43] Dong X, Lou Q, Zhou J. Comparison of Yb-doped fiber laser with one-end and double-end pumping configuration. Opt Laser Technol 2007; 39/4: 871-874.
  • [44] Desurvire E. Analysis of gain difference between forward-and backward-pumped erbium-doped fiber amplifiers in the saturation regime. IEEE Photonic Tech L 1992; 4/7: 711-714.
  • [45] Xue D. Three-dimensional simulation of the temperature field in high-power double-clad fiber lasers. Optik 2011; 122/10: 932-935.
  • [46] Goowin ET. Recurrence relations for cross-products of Bessel functions. Q J Mech Appl Math 1948; 2/1: 73-74.
  • [47] Gursel AT, Elahi P, ˙Ilday FO, ¨ OzyazıcıMS. Theoretical analysis of doping management. In: IEEE ELECO 2013 8th ¨ Electrical and Electronics Engineering International Conference. 28-30 November 2013; Bursa, Turkey. NY, USA: IEEE. pp. 609-613.