Planar array of right-angled isosceles triangular microstrip antenna using Koch and meander lines for the Internet of things

Planar array of right-angled isosceles triangular microstrip antenna using Koch and meander lines for the Internet of things

An ultrawideband antenna array using a right-angled isosceles triangular microstrip antenna as a basic element is presented using inset feed for applications in the Internet of things. A Koch fractal antenna array with defected ground plane is used to generate multiband applications. Further, meander lines are added to increase the equivalent inductance that reduces the size of the antenna and increases the bandwidth and gain. Antenna arrays have been constructed and experimentally studied. The measured results show good agreement with the numerical prediction and wideband operation.

___

  • [1] Islam MT, Cho M, Samsuzzaman M, Kibria S. Compact antenna for small satellite applications. IEEE Antenn Propag M 2015; 57: 30-36.
  • [2] Ko SCK, Murch RD. Compact integrated diversity antenna for wireless communications. IEEE T Antenn Propag 2001; 49: 954-960.
  • [3] Kaka AO, Toycan M. Modified hexagonal Sierpinski gasket-based antenna design with multiband and miniaturized characteristics for UWB wireless communication. Turk J Electr Eng Co 2016; 24: 464-473.
  • [4] Sonda¸s A, U¸car MHB, Erdemli YE. Tunable SRR-based substrate for a microstrip patch antenna. Turk J Electr Eng Co 2012; 20: 159-168.
  • [5] Elsheakh DN, Elsadek HA, Abdallah EA, Elhenawy H, Iskander MF. Enhancement of microstrip monopole antenna bandwidth by using EBG structures. IEEE Antenn Wirel Pr 2009; 8: 959-962.
  • [6] Shah SIH, Bashir S, Altaf A, Shah SDH. Compact multiband Microstrip patch antenna using defected ground structure. In: IEEE 2014 Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory Conference; 6–11 September 2014; The Hague, Netherlands. New York, NY, USA: IEEE. pp. 2367-2370.
  • [7] Bala BD, Rahim MKA, Murad NA. Bandwidth enhanced microstrip patch antenna using metamaterials. In: IEEE 2012 Applied Electromagnetics Conference; 12–13 December 2012; Melaka, Malaysia. New York, NY, USA: IEEE. pp. 280-282.
  • [8] Anguera J, Ortigosa EM, Puente C, Borja C, Soler J. Broadside triple-frequency microstrip patch radiator combining a dual-band modified Sierpinski fractal and a monoband antenna. IEEE T Antenn Propag 2006; 54: 3367-3373.
  • [9] Biswas S, Guha D, Kumar C. Control of higher harmonics and their radiation in microstrip antennas using compact defected ground structures IEEE T Antenn Propag 2013; 61: 3349-3354.
  • [10] Vemagiri J, Balachandran M, Agarwal M, Varahramyan K. Development of compact half-Sierpinski fractal antenna for RFID applications. IEEE Elect Lett 2007; 43: 1-2.
  • [11] Werner DH, Ganguly S. An overview of fractal antennas engineering research. IEEE Antenn Propag M 2003; 45: 38-56.
  • [12] Best SR. On the resonant properties of the Koch fractal and other wire monopole antennas. IEEE Antenn Wirel Pr 2002; 1: 74-76.
  • [13] Hafezifard R, Moghadasi MN, Mohassel JR, Sadeghzadeh RA. Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate. IEEE Antenn Wirel Pr 2016; 15: 40-43.
  • [14] Guha D, Biswas S, Kumar C. Annular ring shaped DGS to reduce mutual coupling between two microstrip patches. In: IEEE 2009 Applied Electromagnetics Conference; 14–16 December 2009; Kolkata, India. New York, NY, USA: IEEE. pp. 1-3.
  • [15] Zulkifli FY, Lomorti ST, Rahardjo ET. Improved design of triangular patch linear array microstrip antenna using isosceles-triangular defected ground structure. In: IEEE 2007 Asia Pacific Microwave Conference; 11–14 December 2007; Bangkok, Thailand. New York, NY, USA: IEEE. pp. 1-4.
  • [16] Gregory MD, Petko JS, Spence TG, Werner DH. Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays. IEEE Antenn Propag M 2010; 52: 28-45.
  • [17] Subbulakshmi P, Rajkumar R. Design and characterization of corporate feed rectangular Microstrip patch array antenna. In: IEEE 2013 Emerging Trends in Computing, Communication and Nanotechnology Conference; 25–26 March 2013; Tirunelveli, India. New York, NY, USA: IEEE. pp. 547-552.
  • [18] C¸ akır G, Sevgi L. Design, simulation and tests of a low-cost Microstrip patch antenna arrays for wireless communication. Turk J Electr Eng Co 2005; 13: 93-103.
  • [19] Werner DH, Haupt RL, Werner PL. Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Antenn Propag M 1999; 41: 37-59.
  • [20] Siakavara K. Novel fractal antenna arrays for satellite networks: circular ring Sierpinski carpet arrays optimized by genetic algorithms. Prog Electromagn Res 2010; 103: 115-138.
  • [21] King DD, Peters HJ. Mode theory approach to arrays. IEEE Antenn Wirel Propag Lett 1965; 6: 321-322.
  • [22] Gupta M, Mathur V. Analysis of right angled isosceles triangular Microstrip patch antenna (RITMA) for UWB applications. IEICE Commun Expr 2016; 5: 13-18.
  • [23] Tiwari VK, Bhatnagar D, Saini JS, Kumar P. Investigation of radiation properties of a right isosceles triangular microstrip antenna. Indian J Radio Space 2005; 34: 353-356.
  • [24] Lo YT, Solomon D, Richards WF. Theory and experiment on microstrip antennas. IEEE T Antenn Propag 1979; 27: 137-145.
  • [25] Bhal IJ, Bharti P. Microstrip Antennas. 2nd ed. Norwood, MA, USA: Artech House, 1980.
  • [26] Balanis CA. Antenna Theory Analysis and Design. New York, NY, USA: John Wiley, 2005.
  • [27] Sadiku MNO. Principles of Electromagnetics. 3rd ed. New York, NY, USA: Oxford University Press, 2007.
  • [28] Nashaat D, Elsadek HA, Abdallah EA, Iskander MF, Hennawy HMEl. Ultra wide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure. IEEE T Antenn Propag 2011; 59: 1528-1534.