Multiplicative-additive despeckling in SAR images

Multiplicative-additive despeckling in SAR images

Visual and automatic analyses using synthetic aperture radar (SAR) images are challenging because of inherently formed speckle noise. Thus, reducing speckle noise in SAR images is an important research area for SAR image analysis. During speckle noise reduction, homogeneous regions should be smoothed while details such as edges and point scatterers need to be preserved. General speckle noise model contains gamma distributed multiplicative part which is dominant and Gaussian distributed additive part which is in low amount and mostly neglected in literature. In this study, a novel sparsity-driven speckle reduction method is proposed that takes both multiplicative noise model and additive noise model into consideration. The proposed speckle reduction method uses a cost function with multiplicative and additive data terms besides the total variation smoothness term. Also, an efficient and stable numerical minimization scheme is proposed for the proposed cost function that deals with multiplicative and additive noise. Speckle reduction performance of the proposed method is shown on synthetically generated SAR images and real-world SAR images

___

  • 1] Richards JA. Remote Sensing with Imaging Radar. Berlin, Germany: Springer, 2009. [2] Argenti F, Lapini A, Bianchi T, Alparone L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geoscience and Remote Sensing Magazine 2013; 1(3): 6-35. doi:10.1109/MGRS.2013.2277512
  • [3] Bruniquel J, Lopes A. Multi-variate optimal speckle reduction in SAR imagery. International Journal of Remote Sensing 1997; 18(3): 603-627. doi: 10.1080/014311697218962
  • [4] Özcan C, Ersoy KO, Oğul İÜ. Fast texture classification of denoised SAR image patches using GLCM on Spark. Turkish Journal of Electrical Engineering & Computer Sciences 2020; 28(1): 182-195. doi: 10.3906/elk-1904-7
  • [5] Lee JS, Wen JH, Ainsworth TL, Chen KS, Chen AJ. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing 2009; 47 (1): 202-213. doi: 10.1109/TGRS.2008.2002881
  • [6] Gonzalez RC, Woods RE. Digital Image Processing. London, UK: Pearson, 2017.
  • [7] Frost VS, Stiles JA, Shanmugan KS, Holtzman JC. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 1982; 4 (2): 157-166. doi: 10.1109/TPAMI.1982.4767223
  • [8] Lee JS. A simple speckle smoothing algorithm for synthetic aperture radar images. IEEE Transactions on Systems, Man, and Cybernetics 1983; 13 (1): 85-89. doi: 10.1109/TSMC.1983.6313036
  • [9] Kuan DT, Sawchuk AA, Strand TC, Chavel P. Adaptive noise smoothing filter for images with signal- dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 1985; 7 (2): 165-177. doi: 10.1109/TPAMI.1985.4767641
  • [10] Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity. IEEE Transactions on Geoscience and Remote Sensing 1990; 28 (6): 992-1000. doi: 10.1109/36.62623
  • [11] Lee JS, Jurkevich L, Dewaele P, Wambacq P, Oosterlinck A. Speckle filtering of synthetic aperture radar images: a review. Remote Sensing Reviews 1994; 8 (4): 313-340. doi: 10.1080/02757259409532206
  • [12] Buades A, Coll B, Morel JM. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 2005; 4 (2): 490-530. doi: 10.1137/040616024
  • [13] Deledalle CA, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Transactions on Image Processing 2009; 18 (12): 2661-2672. doi: 10.1109/TIP.2009.2029593
  • [14] Parrilli S, Poderico M, Angelino CV, Verdoliva L. A nonlocal SAR image denoising algorithm based on LLMMSE Wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing 2012; 50 (2): 606-616. doi:10.1109/TGRS.2011.2161586
  • [15] Foucher S, Benie GB, Boucher JM. Multiscale MAP filtering of SAR images. IEEE Transactions on Image Processing 2001; 10 (1): 49-60. doi: 10.1109/83.892442
  • [16] Solbo S, Eltoft T. Homomorphic Wavelet-based statistical despeckling of SAR images. IEEE Transactions on Geoscience and Remote Sensing 2004; 42 (4): 711-721. doi: 10.1109/TGRS.2003.821885
  • [17] Liu S, Hu Q, Li P, Zhao J, Zhu Z. SAR image denoising based on patch ordering in nonsubsample shearlet domain. Turkish Journal of Electrical Engineering & Computer Sciences 2018; 26 (4): 1860-1870. doi: 10.3906/elk-1711-407
  • [18] Huang YM, Moisan L, Ng MK, Zeng ZT. Multiplicative noise removal via a learned dictionary. IEEE Transaction on Image Processing 2012; 21 (11): 4534-4543. doi: 10.1109/TIP.2012.2205007
  • [19] Soganlui A, Cetin M. Dictionary learning for sparsity-driven SAR image reconstruction. In: IEEE International Conference on Image Processing (ICIP); Paris, France; 2014. pp. 1693-1697.
  • [20] Wang P, Zhang H, Patel M. V. SAR image despeckling using a convolutional neural network. IEEE Signal Processing Letters 2017; 24 (12):1763-1767. doi: 10.1109/LSP.2017.2758203
  • [21] Lattari F, Leon BG, Asaro F, Rucci A, Prati C et al. Deep learning for SAR image despeckling. Remote Sensing 2019; 11 (13): 1-20. doi: 10.3390/rs11131532
  • [22] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 1990; 12 (7): 629 - 639. doi: 10.1109/34.56205
  • [23] Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart, Germany: Teubner, 1998.
  • [24] Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 2002; 11 (11): 1260-1270. doi: 10.1109/TIP.2002.804276
  • [25] Rudin LI, Osher S,Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 1992; 60 (1): 259-268. doi: 10.1016/0167-2789(92)90242-F
  • [26] Ozcan C, Sen B, Nar F. Sparsity-driven despeckling for SAR images. IEEE Geoscience and Remote Sensing Letters 2016; 13 (1): 115-119. doi: 10.1109/LGRS.2015.2499445
  • [27] Nar F. SAR image despeckling using quadratic-linear approximated ℓ1 -norm. Electronics Letters 2018; 54 (6): 387-389. doi: 10.1049/el.2017.3873
  • [28] Nar F, Atasoy F. Fast quadratic-linear approximated ℓ1 -norm for SAR image despeckling. In: International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES); Karabük, Turkey; 2018. pp. 23-27.
  • [29] Aubert G, Aujol JF. A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics 2008; 68 (4): 925-946. doi: 10.1137/060671814
  • [30] Durand S, Fadili J, Nikolova M. Multiplicative noise removal using L1 fidelity on frame coefficients. Journal of Mathematical Imaging and Vision 2010; 36 (3): 201-226. doi: 10.1007/s10851-009-0180-z
  • [31] Bioucas-Dias JM, Figueiredo MAT. Multiplicative noise removal using variable splitting and constrained optimiza- tion. IEEE Transactions on Image Processing 2010; 19 (7): 1720-1730. doi: 10.1109/TIP.2010.2045029
  • [32] Aksoy G, Nar F. Sparsity-driven multiplicative noise reduction. In: Signal Processing and Communications Appli- cations Conference (SIU); Antalya, Turkey; 2017. pp. 1-4.
  • [33] Nocedal J, Wright SJ. Numerical Optimization. Berlin, Germany: Springer, 2006.