Modeling and control of a permanent-magnet brushless DC motor drive using a fractional order proportional-integral-derivative controller

Modeling and control of a permanent-magnet brushless DC motor drive using a fractional order proportional-integral-derivative controller

This paper deals with the speed control of a permanent-magnet brushless direct current (PMBLDC) motor. A fractional order PID (FOPID) controller is used in place of the conventional PID controller. The FOPID controller is a generalized form of the PID controller in which the order of integration and differentiation is any real number. It is shown that the proposed controller provides a powerful framework to control the PMBLDC motor. Parameters of the controller are found by using a novel dynamic particle swarm optimization (dPSO) method. The frequency domain pole-zero (p-z) interlacing method is used to approximate the fractional order operator. A three-phase inverter with four switches is used in place of the conventional six-switches inverter to suggest a cost-effective control scheme. The digital controller has been implemented using a eld programmable gate array (FPGA). The control scheme is veri ed using the FPGA-in-the-loop (FIL) wizard of MATLAB/Simulink. Improvement in the overall performance of the system is observed using the proposed FOPID controller. The energy efficient nature of the FOPID controller is also demonstrated.

___

  • [1] Hughes A, Drury B. Electric Motors and Drives: Fundamentals, Types and Applications. Waltham, MA, USA: Newnes, 2013.
  • [2] Aydogdu O, Akkaya R. An effective real coded GA based fuzzy controller for speed control of a BLDC motor without speed sensor. Turk J Electr Eng Co 2011; 19: 413-430.
  • [3] Pillay P, Krishnan R. Modeling, simulation and analysis of permanent magnet motor drives, part II: The brushless DC motor drive. IEEE T Ind Appl 1989; 25: 274-279.
  • [4] Krishnan R. Permanent-Magnet Synchronous and Brushless DC Motor Drives. Boca Raton, FL, USA: CRC Press, 2009.
  • [5] Astrom K, Hagglund T. The future of PID control. Control Eng Pract 2001; 9: 1163-1175.
  • [6] Ranjbaran K, Tabatabaei M. Fractional order [PI], [PD] and [PI][PD] controller design using Bode's integrals. Int J Dynam Control (in press).
  • [7] Das S. Functional Fractional Calculus. 2nd ed. New York, NY, USA: Springer, 2011.
  • [8] Aware MV, Junghare AS, Khubalkar SW, Dhabale A, Das S, Dive R. Design of new practical phase shaping circuit using optimal polezero interlacing algorithm for fractional order PID controller. Analog Integr Circ S 2017; 91: 131-145.
  • [9] Chopade AS, Khubalkar SW, Junghare AS, Aware MV, Das S. Design and implementation of digital fractional order PID controller using optimal pole-zero approximation method for magnetic levitation system. IEEE/CAA J Automatica Sinica 2016; 99: 1-12.
  • [10] Podlubny I. Fractional order systems and PI  D  -controllers. IEEE T Automat Contr 1999; 44: 208-214.
  • [11] Shah P, Agashe S. Review of fractional PID controller. Mechatronics 2016; 38: 29-41.
  • [12] Khubalkar S, Chopade A, Junghare A, Aware M, Das S. Design and realization of stand alone digital fractional order PID controller for buck converter fed DC motor. Circ Syst Signal Pr 2016; 35: 2189-2211.
  • [13] Atan O, Chen D, Turk M. Fractional order PID and application of its circuit model. J Chin Inst Eng 2016; 39: 695-703.
  • [14] Celik V, Demir Y. Effects on the chaotic system of fractional order PI controller. Nonlinear Dynam 2010; 59: 143-159.
  • [15] Das S, Saha S, Das S, Gupta A. On the selection of tuning methodology of FO-PID controllers for the control of higher order processes. ISA T 2011; 50: 376-388.
  • [16] Ozdemir MT, Ozturk D, Eke I, Celik V, Lee KY. Tuning of optimal classical and fractional order PID parameters for automatic generation control based on the bacterial swarm optimization. IFAC-PapersOnline 2015; 48: 501-506.
  • [17] Jin Y, Branke J. Evolutionary optimization in uncertain environments: a survey. IEEE T Evolut Comput 2005; 9: 303-317.
  • [18] Maiti D, Acharya A, Chakraborty M, Konar A, Janarthanan R. Tuning PID and PI?D? controllers using the integral time absolute error criterion. In: Proceedings of the 4th International Conference on Information and Automation for Sustainability; December 2008; Colombo, Sri Lanka. New York, NY, USA: IEEE. pp. 457462.
  • [19] Badar AQH, Umre BS, Junghare AS. Reactive power control using dynamic particle swarm optimization for real power loss minimization. Int J Elec Power 2012; 41: 133-136.
  • [20] Dhabale AS, Dive R, Aware MV, Das S. A new method for getting rational approximation for fractional-order differintegrals. Asian J Control 2015; 17: 2143-2152.
  • [21] Lee BK, Kim TH, Ehsani M. On the feasibility of four-switch three phase BLDC motor drives for low cost commercial applications- topology and control. IEEE T Power Electr 2003; 18: 164-172.
  • [22] Sathyan A, Milivojevic N, Lee YJ, Krishnamurthy M, Emadi A. An FPGA based novel digital PWM control scheme for BLDC motor drives. IEEE T Ind Electron 2009; 56: 3040-3049.
  • [23] Rodriguez F, Emadi A. A novel digital control technique for brushless DC motor drives. IEEE T Ind Electron 2007; 54: 2365-2373.
  • [24] Carlson G, Halijak C. Approximation of fractional capacitors (1 =s ) 1 =n by a regular Newton process. IEEE T Circuit Theory 1964; 11: 210-213.
  • [25] Oustaloup A. La commande CRONE: commande robuste d'ordre non entier. Paris, France: Hermes, 1991 (in French).
  • [26] Oustaloup A, Levron F, Mathieu B, Nanot F. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE T Circuits I 2000; 47: 25-39.
  • [27] de Oliveira Valerio DPM. Ninteger v. 2.3 Fractional Control Toolbox for MatLab. User and Programmer Manual. Lisbon, Portugal: University of Lisbon, 2005.
  • [28] Machado JT. Discrete-time fractional order controllers. Fractional Calculus and Applied Analysis 2001; 4: 47-66.
  • [29] Zheng W, Pi Y. Study of the fractional-order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm. ISA T 2016; 63: 387-393.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK