InGaN/GaN tandem solar cell parameter estimation: a comparative study

InGaN/GaN tandem solar cell parameter estimation: a comparative study

In this paper, two hybrid estimation approaches, hybrid genetic algorithm (TR-GA) and hybrid particleswarm optimization (TR-PSO), are used to estimate single-diode model InGaN/GaN solar cell parameters from J–Vexperimental data under AM0 illumination. These parameters are photocurrent density (Jph ), reverse saturation currentdensity (Js ), ideality factor (A), series resistance (Rs ), and shunt resistance (Rsh ). The trust region (TR) method usedin both approaches provides the initial conditions and helps to avoid the problem of premature convergence (due to localminimum). Simulation results based on the minimization of the mean square error between experimental and theoreticalJ–V characteristics show that both applied methods have a similar degree of efficiency in terms of precision, whereasthe TR-PSO method is more efficient in terms of convergence speed. The effect of different extracted parameters on thecharacteristics J–V and P–V is evaluated in a simulation study of an identified model.

___

  • [1] Pankove, Jacques I. Semiconductors and semimetals. Princeton, NJ, USA: Academic Press, 1984.
  • [2] Kibria MT, Ahammed A, Sony SM, Hossain F, Islam SU. A review: comparative studies on different generation solar cells technology . In: Proceedings of 5th International Conference on Environmental Aspects of Bangladesh; Dhaka-1000, Bangladesh; 2014.
  • [3] Neufeld CJ, Toledo NG, Cruz SC, Iza M, DenBaars SP et al. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Applied Physics Letters 2008; 93 (14): 143502. doi: 10.1063/1.2988894
  • [4] Jani O, Ferguson I, Honsberg C, Kurtz S. Design and characterization of GaNInGaN solar cells. Applied Physics Letters 2007; 91 (13): 132117. doi: 10.1063/1.2793180
  • [5] David RF. III-V Nitrides for electronic and optoelectronic applications. Proceedings of the IEEE 1991; 79 (5): 702-712. doi: 10.1109/5.90133
  • [6] Acharya AR. Group III–nitride semiconductors: preeminent materials for modern electronic and optoelectronic applications. Himalayan Physics 2015; 5: 22-26. doi: 10.3126/hj.v5i0.12818
  • [7] Dahal R, Aryal J, Li K, Lin JY, Jtan HX. InGaN/GaN multiple quantum well concentrator solar cells. Applied Physics Letters 2010; 97 (7): 073115. doi: 10.1063/1.3481424
  • [8] Raj S, Kumar SA, Panchal AK. Solar cell parameters estimation from illuminated I-V characteristic using linear slope equations and Newton-Raphson technique. Journal of Renewable and Sustainable Energy 2013; 5 (3): 033105. doi: 10.1063/1.4803748
  • [9] Ortiz-Conde A, García Sánchez FJ, Muci J. New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics. Solar Energy Materials and Solar Cells 2006; 90 (3): 352-361. doi: 10.1016/j.solmat.2005.04.023
  • [10] Ma J. Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems. PhD, University of Liverpool, Liverpool, UK, 2014.
  • [11] Mughal MA, Ma Q, Xiao C. Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing. Energies 2017; 10 (8): 1213. doi: 10.3390/en10081213
  • [12] Ye M, Wang X, Xu Y. Parameter extraction of solar cells using particle swarm optimization. Journal of Applied Physics 2009; 105 (9): 094502. doi: 10.1063/1.3122082
  • [13] Moldovan N, Picos R, Xu Y. Parameter extraction of a solar cell compact model using genetic algorithms. In: IEEE 2009 Electron Devices Conference; Santiago de Compostela, Spain; 2009. pp. 379-382.
  • [14] Askarzadeh A, Rezazadeh A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Applied Energy 2013; 102: 943-949. doi: 10.1016/j.apenergy.2012.09.052
  • [15] Askarzadeh A, Rezazadeh A. Parameter identification for solar cell models using harmony search-based algorithms. Solar Energy 2012; 86 (11): 3241-3249. doi: 10.1016/j.solener.2012.08.018
  • [16] El-Naggar KM, AlRashidi MR, AlHajri MF, Al-Othman AK. Simulated annealing algorithm for photovoltaic parameters identification. Solar Energy 2012; 86 (1): 266-274. doi: 10.1016/j.solener.2011.09.032
  • [17] AlHajri MF, El-Naggar KM, AlRashidi MR, Al-Othman AK. Optimal extraction of solar cell parameters using pattern search. Renewable Energy 2012; 44: 238-245. doi: 10.1016/j.renene.2012.01.082
  • [18] Ma J, Ting TO, Man KL, Zhang N, Guan S et al. Parameter estimation of photovoltaic models via cuckoo search. Journal of Applied Mathematics 2013; 2013: 10-12. doi: 10.1155/2013/362619
  • [19] Ishaque K, Salam Z, Mekhilef S,Shamsudin A. Parameter extraction of solar photovoltaic modules using penaltybased differential evolution. Applied Energy 2012; 99: 297-308. doi: 10.1016/j.apenergy.2012.05.017
  • [20] Mughal MA, Ma Q, Xiao C. Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing. Energies 2017; 10 (8): 1213. doi: 10.3390/en10081213
  • [21] Ayala-Mató F, Seuret-Jiménez D, Escobedo-Alatorre JJ, Vigil-Galán O, Courel M. A hybrid method for solar cell parameter estimation. Journal of Renewable and Sustainable Energy 2017; 9 (6): 063504. doi: 10.1063/1.4985953
  • [22] Fan NFA, Liang YC, Zahara E. A genetic algorithm and a particle swarm optimizer hybridized with Nelder–Mead simplex search. Computers & industrial engineering 2006; 50 (4): 401-425. doi: 10.1016/j.cie.2005.01.022
  • [23] Hamid SKS, Rahim NA, Selvaraj J. Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization. Journal of Renewable and Sustainable Energy 2016; 8 (1): 015502. doi: 10.1063/1.4941791
  • [24] Iftiquar SM, Yi J. Low reverse saturation current density of amorphous silicon solar cell due to reduced thickness of active layer. Journal of Electrical Engineering & Technology 2016; 11 (4): 939-942. doi: 10.5370/JEET.2016.11.4.939
  • [25] Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. International Journal of Solar Energy 1986; 4 (1): 1-12. doi: 10.1080/01425918608909835
  • [26] Jervase JA, Bourdoucen H, Al-Lawat A. Solar cell parameter extraction using genetic algorithms. Measurement science and technology 2001; 12 (11): 1922-1925. doi: 10.1088/0957-0233/12/11/322
  • [27] Ye M, Wang X. Parameter extraction of solar cells using particle swarm optimization. Journal of Applied Physics 2009; 105 (9): 094502. doi: 10.1063/1.3122082
  • [28] Soon JJ, Low K. Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Transactions on Power Electronics 2012; 27 (9): 3975-3983. doi: 10.1109/TPEL.2012.2188818
  • [29] Rodrigues EMG, Melicio R, Mendes VMF, Catalao JPS. Simulation of a solar cell considering single-diode equivalent circuit model. In: ICREPQ’11 International Conference on Renewable Energies and Power Quality; Las Palmas de Gran Canaria, Spain; 2011. pp. 369-373.
  • [30] Rameen S, Abdel H. Detecting the parameters of solar cells using efficient curve fitting techniques. International Journal of Engineering Research and Technology 2014; 7: 185-199.
  • [31] Chegaa M, Azzouzi G, Mialhe P. Simple parameter extraction method for illuminated solar cells. Solid State Electron 2006; 50: 1234-1237. doi: 10.1016/j.sse.2006.05.020
  • [32] Villalva MG, Gazoli JR, Ruppert Filho E. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on power electronics 2006; 24 (5): 1198-1208. doi: 10.1109/TPEL.2009.2013862
  • [33] Srinivas M, Patnaik LM. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 1994; 24 (4): 656-667. doi: 10.1109/21.286385
  • [34] Zagrouba M, Sellami A, Bouaïcha M, Ksouri M. Identification of PV solar cells and modules parameters using the genetic algorithms. Solar Energy 2010; 84 (5): 860-866. doi: 10.1016/j.solener.2010.02.012
  • [35] Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. In: International conference on evolutionary programming; Berlin, Heidelberg, Germany; 1998. pp. 591-600.
  • [36] Ishaque Z, Salam M, Mekhilef S. An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE Transactions on Power Electronics 2012; 27 (8): 3627-3638. doi: 10.1109/TPEL.2012.2185713