Energy efficiency in CMOS power amplifier designs for ultralow power mobile wireless communication systems

Energy efficiency in CMOS power amplifier designs for ultralow power mobile wireless communication systems

Wireless communication standards keep evolving so that the requirement for high data rate operation can befulfilled. This leads to the efforts in designing high linearity and low power consumption radio frequency power amplifier(RFPA) to support high data rate signal transmission and preserving battery life. The percentage of the DC power ofthe transceiver utilized by the power amplifier (PA) depends on the efficiency of the PA, user data rate, propagationconditions, signal modulations, and communication protocols. For example, the PA of a WLAN transceiver consumes49% of the overall efficiency from the transmitter. Hence, operating the PA with minimum power consumption withouttrading-off the linearity is vital in order to achieve the goal of fully integrated system-on-chip (SoC) solution for 4Gand 5G transceivers. In this paper, the efficiency in CMOS PA is discussed through the review of multifarious efficiencyenhancement techniques in CMOS PA design. This is categorized into the review of efficiency in fundamental classes ofPA in which Class E achieves the highest efficiency of 67%, followed by complex architectures utilized to enhance theefficiency level of the PA in which the outphasing architecture achieved the highest efficiency of 60.7%.

___

  • [1] Bougard B, Pollin S, Lenoir G, Eberle W, Perre LV et al. Energy-scalability enhancement of wireless local area network transceivers. In: IEEE 5th Workshop on Signal Processing Advances in Wireless Communications; Lisbon, Portugal; 2004. pp. 449-453.
  • [2] Paidi V, Xie S, Coffie R, Moran B, Heikman S et al. High linearity and high efficiency of class-B power amplifiers in GaN HEMT technology. IEEE Transactions on Microwave Theory and Techniques 2003; 51 (2): 643-652. doi: 10.1109/TMTT.2002.807682
  • [3] Lee O, An KH, Kim H, Lee DH, Han J et al. Analysis and design of fully integrated high power parallel-circuit class-E CMOS power amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers 2010; 157 (3): 725-734. doi: 10.1109/TCSI.2009.2023944
  • [4] Fallesen C, Asbeck P. A 1 W CMOS power amplifier for GSM-1800 with 55% PAE. In: IEEE MTT-S International Microwave Symposium Digest; Phoenix, AZ, USA; 2001. pp. 911-914.
  • [5] Du S, Han X. Design of high efficiency monolithic CMOS Class-E power amplifier for WLAN application. In: IEEE 9th International Conference on Communication Software and Networks (ICCSN); Guangzhou, China; 2017. pp. 600-605.
  • [6] Issa AH, Ezzulddin AS, Ghayyib SM. Toward a fully integrated 2.4 GHz differential pair class-E power amplifier using on-chip RF power transformers for Bluetooth systems. International Journal of Electronics and Communications 2014; 69 (1): 182-187. doi: 10.1016/j.aeue.2014.08.010
  • [7] Son HS, Kim WY, Jang JY, Lee HJ, Oh IY et al. A fully integrated CMOS class-E power amplifier for reconfigurable transmitters with WCDMA/WiMAX applications. In: 26th International Conference on VLSI Design and the 12th International Conference on Embedded Systems; Pune, India; 2013. pp. 169-172.
  • [8] Jeon J, Kuhn WB. A fully integrated UHF CMOS power amplifier for spacecraft applications. IEEE Transactions on Microwave Theory and Techniques 2007; 55 (10): 2006-2014. doi: 10.1109/TMTT.2007.905481
  • [9] Son HS, Kim WY, Jang JY, Oh IY, Park CS. A triple-band CMOS class-E power amplifier for WCDMA/LTE applications. In: Asia-Pacific Microwave Conference Proceedings (APMC); Seoul, South Korea; 2013. pp. 441-443.
  • [10] Cai J, Li Z. A 1-V, 800-MHz CMOS class-E power amplifier with power control for wireless sensor network. In: International Conference on Wireless Communications and Signal Processing; Hangzhou, China; 2013. pp. 1-4
  • [11] Javidan J, Torkzadeh P, Atarodi M. A 1W, 900MHz class-F RF power amplifier with 56% PAE in 0.18-um CMOS technology. In: International Conference on Microelectronics; Sharjah, India; 2008. pp. 90-93.
  • [12] An KH, Lee O, Kim H, Lee DH, Han J et al. Power-combining transformer techniques for fully-integrated CMOS power amplifiers. IEEE Journal of Solid-State Circuits 2008; 43 (5): 1064-1075. doi: 10.1109/JSSC.2008.920349
  • [13] Chowdhury D, Hull CD, Degani OB, Wang Y, Niknejad AM. A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications. IEEE Journal of Solid-State Circuits 2009; 44 (12): 3393-3402. doi: 10.1109/JSSC.2009.2032277
  • [14] Aoki I, Kee SD, Rutledge D, Hajimiri A. A 2.4-GHz, 2.2-W, 2-V fully-integrated CMOS circular-geometry activetransformer power amplifier. In: Proceedings of the IEEE Custom Integrated Circuits Conference; San Diego, CA, USA; 2001. pp. 57-60.
  • [15] Aoki I, Kee SD, Rutledge D, Hajimiri A. Distributed active transformer-a new power-combining and impedancetransformation technique. IEEE Transactions on Microwave Theory and Techniques 2002; 50 (1): 316-331. doi: 10.1109/22.981284
  • [16] An KH, Kim Y, Lee O, Yang KS, Kim H et al. A monolithic voltage boosting parallel- primary transformer structures for fully integrated CMOS power amplifier design. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium; Honolulu, HI, USA; 2007. pp. 419-422.
  • [17] Liu G, Haldi P, Liu TJK, Niknejad AM. Fully integrated CMOS power amplifier with efficiency enhancement at power backoff. IEEE Journal of Solid-State Circuits 2008; 43 (3): 600-609. doi: 10.1109/JSSC.2007.916585
  • [18] Afsahi A, Larson LE. An integrated 33.5 dBm linear 2.4 GHz power amplifier in 65 nm CMOS for WLAN applications. In: IEEE Custom Integrated Circuits Conference; San Jose, CA, USA; 2010. pp. 1-4.
  • [19] Javidan J, Atarodi M, Luong HC. High power amplifier based on a transformer-type power combiner in CMOS technology. IEEE Transactions on Circuits and Systems II: Express Briefs 2010; 57 (11): 838-842. doi: 10.1109/TCSII.2010.2082890
  • [20] Belabad AR, Masoumi N, Ashtiani SJ. A fully integrated 2.4 GHz CMOS high power amplifier using parallel class A&B power amplifier and power-combining transformer for WiMAX application. International Journal of Electronics and Communications 2013; 67 (12): 1030-1037. doi: 10.1016/j.aeue.2013.06.004
  • [21] Solomko VA, Weger P. A fully integrated 3.3–3.8-GHz power amplifier with autotransformer balun. IEEE Transactions on Microwave Theory and Techniques 2009; 57 (9): 2160-2172. doi: 10.1109/TMTT.2009.2027083
  • [22] Ahn H, Baek S, Ryu H, Nam I, Lee O. A highly efficient WLAN CMOS PA with two-winding and single-winding combined transformer. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC); San Francisco, CA, USA; 2016. pp. 310-313.
  • [23] Ahn H, Baek S, Nam I, An D, Lee JK et al. Fully integrated dual-mode cmos power amplifier with an autotransformer-based parallel combining transformer. IEEE Microwave and Wireless Components Letters 2017; 27 (9): 833-835. doi: 10.1109/LMWC.2017.2734762
  • [24] Eswaran U, Ramiah H, Kanesan J. Power amplifier design methodologies for next generation wireless communications. IETE Technical Review 2014; 31 (3): 241-248. doi: 10.1080/02564602.2014.906895
  • [25] Deltimple N, Carneiro ML, Kerhervé E, Carvalho PHP, Belot D. Integrated Doherty RF CMOS Power Amplifier design for average efficiency enhancement. In: IEEE International Wireless Symposium; Shenzhen, China; 2015. pp. 1-4.
  • [26] Hu S, Kousai S, Wang H. A broadband mixed-signal cmos power amplifier with a hybrid class-g doherty efficiency enhancement technique. IEEE Journal of Solid-State Circuits 2016; 51 (3): 598-613. doi: 10.1109/JSSC.2015.2508023
  • [27] Levy CS, Vorapipat V, Buckwalter JF. A 14-GHz, 22-dBm Series doherty power amplifier in 45-nm CMOS SOI. In: IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS); Austin, TX, USA; 2016. pp. 1-4.
  • [28] Traiche S, Slimane A. 3 GHz CMOS Doherty power amplifier for high efficiency. In: Seminar on Detection Systems Architectures and Technologies (DAT); Algiers, Algeria: 2017. pp. 1-4.
  • [29] Kahn LR. Single sideband transmission by envelope elimination and restoration. Proceedings of Institute of Radio Engineers (IRE) 1952; 40 (7): 803-806. doi: 10.1109/JRPROC.1952.273844
  • [30] Zavarei MJ, Taherzadeh-Sani M. Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modulator for LTE applications. Microelectronics Journal 2018; 72: 24-31. doi: 10.1016/j.mejo.2017.11.013
  • [31] Woo JL, Park S, Kim U, Kwon Y. Dynamic stack-controlled cmos rf power amplifier for wideband envelope tracking. IEEE Transactions on Microwave Theory and Techniques 2014; 62 (12): 3452-3464. doi: 10.1109/TMTT.2014.2364831
  • [32] Park B, Kim D, Kim S, Cho Y, Kim J et al. High-Performance CMOS power amplifier with improved envelope tracking supply modulator. IEEE Transactions on Microwave Theory and Techniques 2016; 64 (3): 798-809. doi: 10.1109/TMTT.2016.2518659
  • [33] Ham J, Bae J, Kim H, Seo M, Lee H et al. CMOS power amplifier integrated circuit with dual-mode supply modulator for mobile terminals. IEEE Transactions on Circuits and Systems I: Regular Papers 2016; 63 (1): 157- 167. doi: 10.1109/TCSI.2015.2512703
  • [34] Raab F. Efficiency of outphasing RF power-amplifier systems. IEEE Transactions on Communications 1985; 33 (10): 1094-1099. doi: 10.1109/TCOM.1985.1096219
  • [35] Hung TP, Choi DK, Larson LE, Asbeck PM. CMOS outphasing class-D amplifier with chireix combiner. IEEE Microwave and Wireless Components Letters 2007; 17 (8): 619-621. doi: 10.1109/LMWC.2007.901800
  • [36] Xu H, Palaskas Y, Ravi A, Sajadieh M, Elmala M et al. A 28.1 dBm class-D outphasing power amplifier in 45 nm LP digital CMOS. In: Symposium on VLSI Circuits; Kyoto, Japan; 2009. pp. 206-207.
  • [37] Ding L, Hur J, Banerjee A, Hezar R, Haroun B. A 25 dBm outphasing power amplifier with cross-bridge combiners. IEEE Journal of Solid-State Circuits 2015; 50 (5): 1107-1116. doi: 10.1109/JSSC.2015.2403316
  • [38] Beltran R, Raab FH, Velazquez A. HF outphasing transmitter using class-E power amplifiers. In: IEEE MTT-S International Microwave Symposium Digest; Boston, MA, USA; 2009. pp. 757-760.
  • [39] Hu Z, de Vreede LCN, Alavi MS, Calvillo-Cortes DA, Staszewski RB et al. A 5.9 GHz RFDAC-based outphasing power amplifier in 40-nm CMOS with 49.2% efficiency and 22.2 dBm power. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC); San Francisco, CA, USA; 2016. pp. 206-209.
  • [40] Martelius M, Stadius K, Lemberg J, Nieminen T, Roverato E et al. Class D CMOS power amplifier with on/off logic for a multilevel outphasing transmitter. In: IEEE International Symposium on Circuits and Systems (ISCAS); Montreal, QC, Canada; 2016. pp. 710-713.
  • [41] Banerjee A, Hezar R, Ding L, Haroun B. A 29.5 dBm Class-E outphasing rf power amplifier with efficiency and output power enhancement circuits in 45nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers 2017; 64 (8): 1977-1988. doi: 10.1109/TCSI.2017.2695243
  • [42] Ghahremani A, Annema AJ, Nauta B. Outphasing class-e power amplifiers: from theory to back-off efficiency improvement. IEEE Journal of Solid-State Circuits 2018; 53 (5): 1374-1386. doi: 10.1109/JSSC.2017.2787759