DVCC-based oating capacitance multiplier design

DVCC-based oating capacitance multiplier design

In this paper, a oating capacitance multiplier including two multioutput differential voltage current conveyors, two grounded resistors, and a grounded capacitor is proposed. The proposed oating capacitance multiplier can realize high capacitor values with two small-valued resistors. It is more suitable for integrated circuit technology because it has only grounded passive components without needing any critical passive component matching conditions. Its performances are examined with several simulations using the SPICE program. As an application example, a third-order notch lter using three resistors and three capacitors is given.

___

  • [1] Pennisi S. CMOS multiplier for grounded capacitors. Electron Lett 2002; 38: 765-766.
  • [2] Choi J, Park J, Kim W, Lim K, Laskar J. High multiplication factor capacitor multiplier for an on-chip PLL loop lter. Electron Lett 2009; 45: 239-240.
  • [3] Aparicio R, Hajimiri A. Capacity limits and matching properties of integrated capacitors. IEEE J Solid-St Circ 2002; 37: 384-393.
  • [4] Hwang LC. Area-efficient and self-biased capacitor multiplier for on-chip loop lter. Electron Lett 2006; 42: 1392- 1393.
  • [5] Marcellis A, Ferri G, Stornelli V. NIC-based capacitance multipliers for low-frequency integrated active lter applications. In: Research in Microelectronics and Electronics Conference; 2{5 July 2007; Bordeaux, France. New York, NY, USA: IEEE. pp. 225-228.
  • [6] Tang Y, Ismail M, Bibyk S. Adaptive miller capacitor multiplier for compact on-chip PLL lter. Electron Lett 2003; 39: 43-45.
  • [7] Premont C, Grisel R, Abouchi N, Chante J P. A current conveyor based capacitive multiplier. In: Proceedings of the 40th Midwest Symposium on Circuits and Systems; 3{6 August 1997; Sacramento, CA, USA. New York, NY, USA: IEEE. pp. 146-147.
  • [8] Di Cataldo G, Ferri G, Pennisi S. Active capacitance multipliers using current conveyors. In: Proceedings of the IEEE International Symposium on Circuits and Systems; 31 May{3 June 1998; Monterey, CA, USA. New York, NY, USA: IEEE. pp. 343-346.
  • [9] Abuelma'atti MT, Tasadduq NA. Electronically tunable capacitance multiplier and frequency-dependent negative- resistance simulator using the current-controlled current conveyor. Microelectron J 1999; 30: 869-873.
  • [10] Pal K. New inductance and capacitor oatation schemes using current conveyors. Electron Lett 1981; 17: 807-808.
  • [11] Saad RA, Soliman AM. On the systematic synthesis of CCII-based oating simulators. Int J Circ Theor App 2010; 38: 935-967.
  • [12] Yuce E. On the realization of the oating simulators using only grounded passive components. Analog Integr Circ S 2006; 49: 161-166.
  • [13] Minaei S, Yuce E, Cicekoglu O. A versatile active circuit for realizing oating inductance, capacitance, FDNR and admittance converter. Analog Integr Circ S 2006; 47: 199-202.
  • [14] Khan AA, Bimal S, Dey KK, Roy SS. Current conveyor based R- and C- multiplier circuits. Int J Electron Commun 2002; 56: 312-316.
  • [15] Higashimura M, Fukui Y. Novel method for realising lossless oating immittance using current conveyors. Electron Lett 1987; 23: 498-499.
  • [16] Yuce E, Minaei S, Cicekoglu O. Resistorless oating immittance function simulators employing current controlled conveyors and grounded capacitor. Electr Eng 2006; 88: 519-525.
  • [17] Yuce E. Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. Int J Electron 2006; 93: 679-688.
  • [18] Jaikla W, Siripruchyanan M. An electronically controllable capacitance multiplier with temperature compensation. In: International Symposium on Communications and Information Technology; 18 October{20 September 2006; Bangkok, Thailand. New York, NY, USA: IEEE. pp. 356-359.
  • [19] Khan IA, Ahmed MT. OTA-based integrable voltage/current-controlled ideal C-multiplier. Electron Lett 1986; 22: 365-366.
  • [20] Ahmed MT, Khan IA, Minhaj N. Novel electronically tunable C-multipliers. Electron Lett 1995; 31: 9-11.
  • [21] Li YA. A series of new circuits based on CFTAs. Int J Electron Commun 2012; 66: 587-592.
  • [22] Jaikla W, Lahiri A, Siripruchyanun M. Capacitance multipliers using tunable four terminal oating nullors. In: International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology; 19{21 May 2010; Chiang Mai, Thailand. New York, NY, USA: IEEE. pp. 42-45.
  • [23] Prommee P, Somdunyakanok M. CMOS-based current-controlled DDCC and its applications to capacitance multi- plier and universal lter. Int J Electron Commun 2011; 65: 1-8.
  • [24] Yuce E. A novel oating simulation topology composed of only grounded passive components. Int J Electron 2010; 97: 249-262.
  • [25] Maheshwari S. Analogue signal processing applications using a new circuit topology. IET Circ Device Syst 2009; 3: 106-115.
  • [26] Afzal N, Khan IA. Digitally programmable oating impedance multiplier using DVCC. Int J Electron Commun Comput Technol 2013; 3: 358-361.
  • [27] Siripruchyanan M, Jaikla W. Floating capacitance multiplier using DVCC and CCIIs. In: International Symposium on Communications Information Technologies; 17{19 October 2007; Sydney, Australia. New York, NY, USA: IEEE. pp. 218-221.
  • [28] Siripruchyanun M, Phattanasak M, Jaikla W. Temperature-insensitive, current conveyor-based oating simulator topology. In: International Symposium on Integrated Circuits; 26{28 September 2007; Singapore. New York, NY, USA: IEEE. pp. 65-68.
  • [29] Jiang J, Zhou X, Xu W. Nth-order current transfer function synthesis using DVCCs: signal- ow graph approach. Int J Electron 2013; 100: 482-496.
  • [30] De Marcellis A, Ferri G, Guerrini N C, Scotti G, Stornelli V, Tri letti A. A novel low-voltage low-power fully differential voltage and current gained CCII for oating impedance simulations. Microelectr J 2009; 40: 20-25.
  • [31] Tangsrirat W. Floating simulator with a single DVCCTA. Indian J Eng Mater S 2013; 20: 79-86.
  • [32] Kartci A, Ayten UE, Herencsar N, Sotner R, Jerabek J, Vrba K. Application possibilities of VDCC in general oating element simulator circuit. In: European Conference on Circuit Theory and Design; 24{26 August 2015; Trondheim, Norway. pp. 1-4.
  • [33] Silapan P, Tanaphatsiri C, Siripruchyanun M. Current controlled CCTA based-novel grounded capacitance multiplier with temperature compensation. In: Asia Paci c Conference on Circuits and Systems; 30 November{3 December 2008; Macao. New York, NY, USA: IEEE. pp. 1490-1493.
  • [34] Elwan HO, Soliman AM. Novel CMOS differential voltage current conveyor and its applications. IEE P-Circ Dev Syst 1997; 144: 195-200.
  • [35] Fabre A, Saaid O, Wiest F, Boucheron C. High frequency applications based on a new current controlled conveyor. IEEE T Circuits-I 1996; 43: 82-91.
  • [36] Maundy B, Gift S, Aronhime P. Practical voltage/current-controlled grounded resistor with dynamic range exten- sion. IET Circ Device Syst 2008; 2: 201-206.
  • [37] Yuce E, Minaei S, Alpaslan H. Single voltage controlled CMOS grounded resistors and their application to video lter. Indian J Eng Mater S 2014; 21: 501-509.
  • [38] Wang Z. 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electron Lett 1990; 26: 951-952.
  • [39] Chiu W, Liu SI, Tsao HW, Chen JJ. CMOS differential difference current conveyors and their applications. IEE P-Circ Dev Syst 1996; 143: 91-96.
  • [40] Yuce E, Minaei S, Cicekoglu O. Limitations of the simulated inductors based on a single current conveyor. IEEE T Circuits-I 2006; 53: 2860-2867.
  • [41] Arslan E, Morgul A. Wideband self-biased CMOS CCII. In: Research in Microelectronics and Electronics; 22 June{25 April 2008; _ Istanbul, Turkey. New York, NY, USA: IEEE. pp. 217-220.
  • [42] Moschytz GS. Two-step precision tuning of twin-T notch lter. Proc IEEE 1966; 54: 811-812.
  • [43] Yuce E, Minaei S. Realisation of various active devices using commercially available AD844s and external resistors. Electron World 2007; 113: 46-49.
  • [44] Abbas Z, Scotti G, Olivieri M. Current controlled current conveyor (CCCII) and application using 65nm CMOS technology. Int J Electr Comput Energetic Electron Commun Engineering 2011; 5: 865-869.
  • [45] Georgakopoulos D, Yang WQ. Circuit noise reduction by analogue lowpass ltering and data averaging. Electron Lett 2001; 37: 1147-1148.