Design of a high performance narrowband low noise amplifier using an on-chip orthogonal series stacked differential fractal inductor for 5G applications

Design of a high performance narrowband low noise amplifier using an on-chip orthogonal series stacked differential fractal inductor for 5G applications

Inductors play a crucial role in the design of radio frequency integrated circuits (RFICs) and they typicallyconsume a considerably large area and have a low-quality factor at high frequencies. The employment of fractal structurein on-chip inductors helps in improving the quality factor and also reduces the overall area besides improving theinductance value. In this paper, an orthogonal series stacked differential fractal inductor is proposed and the same isused to design a low noise amplifier (LNA) for 5G band (27–30 GHz) applications. The proposed inductor is fabricated ona multilayer printed circuit board and the measurement results demonstrate twice the enhancement in inductance, 56%improvement in quality factor, and 33% reduction in series resistance when compared to the conventional series stackedfractal inductor for the equivalent on-chip area. The LNA using cascode topology with inductive source degeneration isdesigned and simulated at a center frequency of 28 GHz in 90 nm CMOS technology using the tool Advanced DesignSystem. The inductors in the LNA are replaced with the proposed on-chip inductor for different layers, which contributesto high gain, better input matching, and low noise figure compared to the state-of-the-art LNAs.

___

  • [1] Craninckx J, Steyaert MSJ. A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE Journal of Solid-State Circuits 1997; 32 (5): 736-744. doi: 10.1109/4.568844
  • [2] Lazarus N, Meyer CD, Bedair SS. Fractal inductors. IEEE Transactions on Magnetics 2014; 50 (4): 1-8. doi: 10.1109/TMAG.2013.2290510
  • [3] Padavala AK, Nistala BR. High inductance fractal inductors for wireless applications. Turkish Journal of Electrical Engineering & Computer Sciences 2017; 25 (5): 3868-3880. doi: 10.3906/elk-1607-190
  • [4] Maric A, Radosavljevic G, Zivanov M, Zivanov L, Stojanovic G et al. Modelling and characterisation of fractal based RF inductors on silicon substrate. In: IEEE 2008 International Conference on Advanced Semiconductor Devices and Microsystems; Smolenice Castle, Slovakia; 2008. pp. 191-194.
  • [5] Zolfaghari A, Chan A, Razavi B. Stacked inductors and transformers in CMOS technology. IEEE Journal of SolidState Circuits 2001; 36 (4): 620-628. doi: 10.1109/4.913740
  • [6] Padavala AK, Nistala BR. Fractal series stacked inductor for radio frequency integrated circuit applications. Electronics Letters 2017; 53 (20): 1387-1388. doi: 10.1049/el.2017.2623
  • [7] Zou W, Chen D, Peng W, Zeng Y. Experimental investigation of multi-path and metal-stacking structure for 8-shape on-chip inductors on standard CMOS. Electronics Letters 2016; 52 (24): 1998-1999. doi: 10.1049/el.2016.3442
  • [8] Danesh M, Long JR. Differentially driven symmetric microstrip inductors. IEEE Transactions on Microwave Theory and Techniques 2002; 50 (1): 332-341. doi: 10.1109/22.981285
  • [9] Murphy OH, McCarthy KG, Delabie C, Murphy AC, Chan TK et al. Differential inductor design incorporating multiple Q-enhancement techniques and expanded physical model. In: IEEE 2004 European Microwave Conference; Amsterdam, the Netherlands; 2004. pp. 1373-1376.
  • [10] Teo TH, Choi YB, Liao H, Xiong XZ, Fu JS. Characterization of symmetrical spiral inductor in 0.35 µm CMOS technology for RF application. Solid-State Electronics 2004; 48 (9): 1643-1650. doi: 10.1016/j.sse.2004.04.004
  • [11] Jhon H, Song I, Kang IM, Shin H. 2.4 GHz ISM-band receiver design in a 0.18 µm mixed signal CMOS process. IEEE Microwave and Wireless Components Letters 2007; 17 (10): 736-738. doi: 10.1109/LMWC.2007.905641
  • [12] Jhon H, Song I, Jeon J, Jung H, Koo M et al. 8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application. Electronics Letters 2008; 44 (23): 1353-1354. doi: 10.1049/el:20081963
  • [13] Chen J, Lin W, Yan P, Xu J, Hou D et al. Design of mm-wave transmitter and receiver for 5G. In: IEEE 2017 10th Global Symposium on Millimeter-Waves; Hong Kong, China; 2017. pp. 92-93.
  • [14] Lee TH. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, UK: Cambridge University Press, 2003.
  • [15] Razavi B, Behzad R. RF Microelectronics. Upper Saddle River, NJ, USA: Prentice Hall, 1998.
  • [16] Daoud M, Mnif H, Ghorbel M. Resistive termination low noise amplifier for bio-sensor applications. In: IEEE 2016 11th International Design Test Symposium; Hammamet, Tunisia; 2016. pp. 245-249.
  • [17] Shim Y, Kim C, Lee J, Lee S. Design of full band UWB common-gate LNA. IEEE Microwave and Wireless Components Letters 2007; 17 (10): 721-723. doi: 10.1109/LMWC.2007.905633
  • [18] Yu Y, Yang Y, Chen YE. A compact wideband CMOS low noise amplifier with gain flatness enhancement. IEEE Journal of Solid-State Circuits 2010; 45 (3): 502-509. doi: 10.1109/JSSC.2010.2040111
  • [19] Chen H, Chang D, Juang Y, Lu S. A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques. IEEE Microwave and Wireless Components Letters 2007; 17 (8): 616-618. doi: 10.1109/LMWC.2007.901797
  • [20] Lee J, Park H, Chang H, Yun T. Low-power UWB LNA with common-gate and current-reuse techniques. IET Microwaves Antennas & Propagation 2012; 6 (7): 793-799. doi: 10.1049/iet-map.2011.0415
  • [21] Dai R, Zheng Y, He J, Kong W, Zou S. A 2.5-GHz 8.9-dBm IIP3 current reused LNA in 0.18 µm CMOS technology. In: IEEE 2014 International Symposium on Radio-Frequency Integration Technology; Hefei, China; 2014. pp. 1-3.
  • [22] Chen K, Lu J, Chen B, Liu S. An ultra-wide-band 0.4âffff10-GHz LNA in 0.18 µm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs 2007; 54 (3): 217-221. doi: 10.1109/TCSII.2006.886880
  • [23] Sapone G, Palmisano G. A 3âffff10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory and Techniques 2011; 59 (3): 678-686. doi: 10.1109/TMTT.2010.2090357
  • [24] Shin SC, Tsai MD, Liu RC, Lin KU, Wang H. A 24-GHz 3.9-dB nf low-noise amplifier using 0.18 µm CMOS technology. IEEE Microwave and Wireless Components Letters 2005; 15 (7): 448-450. doi: 10.1109/LMWC.2005.851552
  • [25] Yu KW, Lu YL, Chang DC, Liang V, Chang MF. K-band low-noise amplifiers using 0.18 µm CMOS technology. IEEE Microwave and Wireless Components Letters 2004; 14 (3): 106-108. doi: 10.1109/LMWC.2004.825175
  • [26] Ellinger F. 26-42 GHz SOI CMOS low noise amplifier. IEEE Journal of Solid-State Circuits 2004; 39 (3): 522-528. doi: 10.1109/JSSC.2003.822895
  • [27] Yeh H, Chiong C, Aloui S, Wang H. Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique. IEEE Transactions on Microwave Theory and Techniques 2012; 60 (12): 4066-4079. doi: 10.1109/TMTT.2012.2224365
  • [28] Liang G, Liu F, Muhammad A, Wang Z. 30-50 GHz high-gain CMOS UWB LNA. Electronics Letters 2013; 49 (25): 1622-1623. doi: 10.1049/el.2013.2625
  • [29] Sharma V, Hashmi MS. Design of LNA using on-chip inductor for Ku-band application. In: IEEE 2017 International Conference on Multimedia, Signal Processing and Communication Technologies; Aligarh, India; 2017. pp.199-203.
  • [30] Hasaneen ES, Okely N. On-chip inductor technique for improving LNA performance operating at 15 GHz. Circuits and Systems 2012; 3 (4): 334. doi: 10.4236/cs.2012.34047
  • [31] Janmejay A. Design and analysis of ultra wide band CMOS LNA. MS, San Jose State University, San Jose, CA, USA, 2007.
  • [32] Antonios B, Matthias B, Joachim A, Stefan D, Wladyslaw G et al. An adjusted constant-current method to determine saturated and linear mode threshold voltage of MOSFETs. IEEE Transactions on Electron Devices 2011; 50 (11): 3751-3758. doi: 10.1109/TED.2011.2164080
  • [33] Nagesh D, Bheemarao N. Miniature on-chip band pass filter for RF applications. Microsystem Technologies 2017; 23 (3): 633-638. doi: 10.1007/s00542-016-3052-7
  • [34] Xiang G, Hajimiri A. A 24-GHz CMOS front-end. IEEE Journal of Solid-State Circuits 2004; 39 (2): 368-373. doi: 10.1109/JSSC.2003.821783
  • [35] Chang P, Su S, Hsu SH, Cho W, Jin J. An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS. IEEE Microwave and Wireless Components Letters 2012; 22 (4): 197-199. doi: 10.1109/LMWC.2012.2187883
  • [36] Huang C, Kuo H, Huang T, Chuang H. Low-power, high-gain V-band CMOS low noise amplifier for microwave radiometer applications. IEEE Microwave and Wireless Components Letters 2011; 21 (2): 104-106. doi: 10.1109/LMWC.2010.2091401
  • [37] Mohammadi T, Ghaneizadeh M, Mafinejad Y, Zivanov L. A narrow-band CMOS LNA for wireless communications. In: IEEE 2018 Iranian Conference on Electrical Engineering; Mashhad, Iran; 2018. pp. 265-268