Design and fabrication of a dual-polarized, dual-band reflectarray using optimal phase distribution

Design and fabrication of a dual-polarized, dual-band reflectarray using optimal phase distribution

Two main factors limiting the reflectarray bandwidth are different phase slopes versus the frequency at everypoint on the aperture and the phase limitation of comprising elements at different frequencies. Considering these two factors, a novel design method is proposed to implement a dual-band, dual-polarized reflectarray antenna in X and Ku bands. An optimization algorithm is adopted to find the optimum phase for each unit cell on the reflectarray aperture. The best geometrical parameters of the phasing elements are suggested based on the phase variation of the element versus frequency and the element position with respect to the antenna feed. Many different classes of phasing elements with identical base structures are investigated to provide a lookup table for the optimization algorithm. The optimum phases are obtained so that two collimated beams are realized within the frequencies of 10.95 GHz to 11.7 GHz and 14 GHz to 14.5 GHz with vertical and horizontal polarizations, respectively. From the experimental results, the peak directivity of 27.1 dBi and 30.6 dBi, aperture efficiency of 42% and 67%, and cross-polarization level of less than –15 dB and –20 dB were obtained in the lower and upper bands, respectively.

___

  • [1] Shaker J, Chaharmir MR, Ethier J. Reflectarray Antennas: Analysis, Design, Fabrication, and Measurement. Boston, MA, USA: Artech House, 2014.
  • [2] Karimipour M, Komjani N. Bandwidth enhancement of electrically large shaped-beam reflectarray by modifying the shape and phase distribution of reflective surface. Int J Electron Commun 2016; 5: 530-538.
  • [3] Karimipour M, Pirhadi A, Ebrahimi N. Accurate method for synthesis of shaped-beam non-uniform reflectarray antenna. IET Microwave Antennas Propag 2013; 5: 1247-1253.
  • [4] Karimipour M, Komjani N, Abdolali A, Abbaszade A. Optimum design of dual band shaped-beam circularly polarized reflectarray antenna based on physical optic method. Int J RF Microwave Comput-Aided Eng 2016; 8: 690-702.
  • [5] Aryanian I, Abdipour A, Moradi G. Studying the nonlinear performance of an amplifying reflectarray antenna. Int J Microw Wirel Technol 2017; 9: 481-491.
  • [6] Aryanian I, Abdipour A, Moradi G. Nonlinear analysis of active aperture coupled reflectarray antenna containing varactor diode. Appl Comput Electromagn Soc J 2015; 30: 1102-1108.
  • [7] Aryanian I, Abdipour A, Moradi G. Design fabrication and test of an X-band dual polarized aperture coupled reflectarray element for beam switching. Turk J Elec Eng & Comp Sci 2017; 25: 539-551.
  • [8] Encinar JA, Arrebola M, de la Fuente LF, Toso G. A transmit–receive reflectarray antenna for direct broadcast satellite applications. IEEE T Antennas Propag 2011; 9: 3255-3264.
  • [9] Encinar JA, Datashvili L, Zornoza JA, Arrebola M, Sierra–Castaner M, Besada JL, Baier H, Legay H. Dual– polarization dual–coverage reflectarray for space applications. IEEE T Antennas Propag 2006; 10: 2827–2837.
  • [10] Han C, Zhang Y, Yang Q. A novel single-layer unit structure for broadband reflectarray antenna. IEEE Antennas and Wireless Propagation Letters 2017; 16: 681-684.
  • [11] Genc A, Basyigit IB, Colak B, Helhel S. Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks. AEU-International Journal of Electronics and Communications 2018; 89: 15-23.
  • [12] Deng R , Xu S, Yang F, Li M. Design of a low-cost single-layer X/Ku dual-band metal-only reflectarray antenna. IEEE Antennas and Wireless Propagation Letters 2017; 16: 2106-2109.
  • [13] Fuentes JAO, Montero JS, Lopez JIM, Cuevas JR, Martynyuk AE. Dual-frequency reflectarray based on split-ring slots. IEEE Antennas and Wireless Propagation Letters 2016; 16: 952-955.
  • [14] Florencio R, Encinar JA, Boix RR, Losada V, Toso G. Reflectarray antennas for dual polarization and broadband telecom satellite applications. IEEE T Antennas Propag 2015; 4: 1234-1246.
  • [15] Wang Q, Shao ZH, Cheng YJ, Li PK. Ka/W Dual-band reflectarray antenna for dual linear polarization. IEEE Antennas and Wireless Propagation Letters 2016; 16: 1301-1304.
  • [16] Florencio R, Encinar JA, Boix RR, Pérez G. Palomino. Dual-polarization reflectarray made of cells with two orthogonal sets of parallel dipoles for bandwidth and cross-polarization improvement. IET Microwave Antennas Propag 2014; 15: 1389-1397.
  • [17] Chaharmir MR, Shaker J, Gagnon N. Broadband dual-band linear orthogonal polarisation reflectarray. Electron Lett 2009; 45: 13-14.
  • [18] Bialkowski ME. Bandwidth considerations for a microstrip reflectarray. PIER J 2008; 3: 173–187.
  • [19] Chaharmir MR, Shaker J, Legay H. Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE T Antennas Propag 2009; 10: 3363-3366.
  • [20] Huang J, Encinar JA. Reflectarray Antennas. Piscataway, NJ, USA: IEEE Press, 2008.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK