Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations

Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations

This paper provides an analysis of RC and RL electrical circuits described by a fractional difierential equation of Caputo type. The order considered is 0

___

  • [1] Nasrolahpour H. Time fractional formalism: classical and quantum phenomena. PST J 2012; 3: 99-108.
  • [2] Oldham KB, Spanier J. The Fractional Calculus. New York, NY, USA: Academic Press, 1974.
  • [3] Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York, NY, USA: Wiley, 1993.
  • [4] Podlubny I. Fractional Differential Equations. New York, NY, USA: Academic Press, 1999.
  • [5] Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000.
  • [6] G´omez JF. Comparison of the fractional response of a RLC network and RC circuit. PST J 2012; 3: 736-742.
  • [7] Magin RL. Fractional Calculus in Bioengineering. Danbury, CT, USA: Begell House, 2006.
  • [8] Baleanu D, G¨unvenc ZB, Tenreiro Machado JA. New Trends in Nanotechnology and Fractional Calculus Applications. Dordrecht, the Netherlands: Springer, 2010.
  • [9] Obeidat A, Gharibeh M, Al-Ali M, Rousan A. Evolution of a current in a resistor. Fract Calc App Anal 2011; 14: 247-259.
  • [10] Petras I. Fractional-order memristor-based Chua’s circuit. IEEE T Circuits-II 2010; 57: 975-979.
  • [11] Johnsen GK. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J Electr Bioimp 2012; 3: 20-28.
  • [12] Jimenez-Fernandez VM, Dominguez-Chavez JA, Vazquez-Leal H, Gallardo del Angel A, Hernandez-Paxtian ZJ. Descripci´on del modelo el´ectrico del memristor. Rev Mex F´ıs E 2012; 58: 113-119 (in Spanish).
  • [13] Pabst O, Schmidt T. Frequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generator. J Electr Bioimp 2013; 4: 23-32.
  • [14] Reyes-Melo ME, Martinez-Vega JJ, Guerrero-Salaz´ar CA, Ortiz-Mendez U. Application of fractional calculus to modeling of relaxation phenomena of organic dielectric materials. In: IEEE 2004 International Conference on Solid Dielectrics; 5–9 July 2004; Toulouse, France. New York, NY, USA: IEEE. pp. 530-533.
  • [15] G´omez F, Bernal J, Rosales J, C´ordova T. Modeling and simulation of equivalent circuits in description of biological systems—a fractional calculus approach. J Electr Bioimp 2012; 3: 2-11.
  • [16] Reyes-Melo ME, Martinez-Vega JJ, Guerrero-Salaz´ar CA, Ortiz-Mendez U. Modelling of relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order. J Optoelectron Adv M 2004; 6: 1037-1043.
  • [17] Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory metamaterials. Science 2009; 325: 1518-1521.
  • [18] Di Ventra M. Electrical Transport in Nanoscale Systems. Cambridge, UK: Cambridge University Press, 2008.
  • [19] Di Ventra M, Pershin Y, Chua L. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 2009; 97: 1717-1724.
  • [20] Fouda ME, Radwan AG, Salama KN. Effect of boundary on controlled memristor-based oscillator. In: IEEE 2012 International Conference on Engineering and Technology; 10–11 October 2012; Cairo, Egypt. New York, NY, USA: IEEE. pp. 1-5.
  • [21] Jo S, Chang T, Ebong I, Bhadviya B, Mazumder P, Lu W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 2010; 10: 1297-1301.
  • [22] Di Ventra M, Pershin YV, Chua L. Circuit elements with memory: memristors, memcapacitors and meminductors. Proc IEEE 2009; 97: 1717-1724.
  • [23] Pershin YV, Di Ventra M. Memristive circuits simulate memcapacitors and meminductors. Proc IEEE 2009; 97: 517-528.
  • [24] Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 2002; 5: 367-386.
  • [25] Moshre-Torbati M, Hammond JK. Physical and geometrical interpretation of fractional operators. J Franklin I 1998; 335: 1077-1086.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Finger-vein biometric identification using convolutional neural network

Mohamed HANI KHALIL, Rabia BAKHTERI, Syafeeza RADZI AHMAD

Power regulated DC/DC driver design by hierarchical control

Asim KAYGUSUZ, Cemal KELEŞ, Barış Baykant ALAGÖZ, Yusuf KAPLAN, Abdulkerim KARABİBER

Identifying acquisition devices from recorded speech signals using wavelet-based features

Ömer ESKİDERE

Study of the icing growth characteristic and its influencing factors for different types of insulators

Dongdong ZHANG, Zhijin ZHANG, Xingliang JIANG, Haizhou HUANG, David Wenzhong GAO

Fractional control and generalized synchronization for a nonlinear electromechanical chaotic system and its circuit simulation with

Wei SUN, Multisim Zhen WANG, Tengfei LEI, Xiaojian XI

Upper limb rehabilitation robot for physical therapy: design, control, and testing

Erhan AKDOGAN

Variations and relations of meteorological parameters between upwind and downwind small-scale wind turbine rotor area

Ahmet ÖZTOPAL, Ahmet Duran ŞAHİN, Bihter DURNA, Ercan İZGİ, Mustafa Kemal KAYMAK

A slotted ALOHA-based cognitive radio network under capture effect in Rayleigh fading channels

Alper KARAHAN, Sedat ATMACA, Muhammed Enes BAYRAKDAR

A discrete numerical method for magnetic field determination in three-phase busbars of a rectangular cross-section

Tomasz SZCZEGIELNIAK, Zygmunt PIATEK, Bernard BARON, Pawe LONSKI lJAB, Artur PASIERBEK, Dariusz KUSIAK

Comprehensive review of association estimators for the inference of gene networks

Nizamettin AYDIN, Gökmen ALTAY, Zeyneb KURT