Asymmetric slope compensation for digital hybrid current mode control of athree-level flying capacitor buck convertercontrol of athree-level flying capacitor buck converter

Asymmetric slope compensation for digital hybrid current mode control of athree-level flying capacitor buck convertercontrol of athree-level flying capacitor buck converter

The three-level flying capacitor (3LFC) buck converter has the potential to provide better efficiency and higher power density as compared to the traditional buck converter. However, due to the flying capacitor’s instability issues, control is challenging. In this paper, the digital hybrid current mode (DHCM) control method, which combines the average and peak current mode control techniques, is modified and implemented to a 3LFC buck converter. For flying capacitor (FC) voltage balancing, a novel asymmetric slope compensation (ASC) technique is presented. The proposed ASC technique achieves FC voltage balancing by adjusting the slope compensation of the two switching pairs asymmetrically, and therefore is applicable to any type of digital peak current mode control (PCM) method. The ASC technique for DHCM control of the 3LFC buck converter is verified in simulations and experimentally with an ARM- based mixed-signal microcontroller on a 250-kHz, 24-V input, and 35-W/4-A output prototype. The overall control method enables the implementation of the 3LFC buck converter for accurate and fast current regulation, and therefore is especially advantageous for LED and laser diode driver applications.

___

  • [1] Meynard TA, Foch H. Multi-level conversion: high voltage choppers and voltage-source inverters. In: 23rd Annual IEEE Power Electronics Specialists Conference (PESC); Toledo, Spain, 1992. pp. 397-403.
  • [2] Peng FZ. A generalized multilevel topology with self voltage balancing. IEEE Transactions on Industry Applications 2001; 37, (2): 611-618. doi: 10.1109/28.913728
  • [3] Rentmeister JS, Stauth JT. A 48V:2V flying capacitor multilevel converter using current-limit control for flying capacitor balance. In: IEEE Applied Power Electronics Conference and Exposition (APEC); Tampa, FL, USA; 2017. pp. 367-372.
  • [4] Stillwell A, Candan E, Pilawa-Podgurski RCN. Constant effective duty cycle control for flying capacitor balancing in flying capacitor multi-level converters. In: 19th Workshop on Control and Modeling for Power Electronics (COMPEL); Padua, Italy; 2018. pp. 1-8.
  • [5] Stillwell A, Candan E, Pilawa-Podgurski RCN. Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control. IEEE Transactions on Power Electronics 2019; 34, (11): pp. 11429-11441 doi:10.1109/TPEL.2019.2899899.
  • [6] Rentmeister JS, Schaef C, Foo BX, Stauth JT. A flying capacitor multilevel converter with sampled valley-current detection for multi-mode operation and capacitor voltage balancing. In: IEEE Energy Conversion Congress and Exposition (ECCE); Milwaukee, WI, USA; 2016. pp. 1-8.
  • [7] Vukadinovic N, Prodić A, Miwa BA, Arnold CB, Baker MW. Extended wide-load range model for multi-level DC- DC converters and a practical dual-mode Digital Controller. In: IEEE Applied Power Electronics Conference and Exposition (APEC); Long Beach, CA, USA; 2016. pp. 1597-1602.
  • [8] Reusch D, Lee FC, Xu M. Three level buck converter with control and soft startup. In: IEEE Energy Conversion Congress and Exposition (ECCE); San Jose, CA, USA; 2009. pp. 31-35.
  • [9] Carvalho SDS, Halamíček M, Vukadinović N, Prodić A. Digital PWM for Multi-Level Flying Capacitor Converters with Improved Output Resolution and Flying Capacitor Voltage Controller Stability. In: 19th Workshop on Control and Modeling for Power Electronics (COMPEL); Padua, Italy; 2018. pp. 1-7.
  • [10] Lu L, Ahsanuzzaman SM, Prodić A, Calabrese G, Frattini G, Granato M. Peak offsetting based cpm controller for multi-level flying capacitor converters. In: IEEE Applied Power Electronics Conference and Exposition (APEC); San Antonio, TX, USA; 2018. pp. 3102-3107.
  • [11] Abdelhamid E, Bonanno G, Corradini L, Mattavelli P, Agostinelli M. Stability properties of the 3-level flying capacitor buck converter under peak or valley current-programmed-control. IEEE Transactions on Power Electronics 2019; 34, (8): pp. 8031-8044. doi:10.1109/TPEL.2018.2877943.
  • [12] Lu L, Zhang Y, Ahsanuzzaman SM, Prodic A, Calabrese G, Frattini G, Granato, M. Digital average current programmed mode control for multi-level flying capacitor converters. In: 19th Workshop on Control and Modeling for Power Electronics (COMPEL); Padua, Italy; 2018. pp. 1-7.
  • [13] Ruan X, Li B, Chen Q, Tan S-C, Tse CK. Fundamental considerations of three-level DC–DC converters: topologies, analyses, and control. IEEE Transactions on Circuits and Systems I: Regular Papers 2008; 55, (11): pp. 3733-3743. doi:10.1109/TCSI.2008.927218.
  • [14] El Aroudi A, Robert BGM, Cid-Pastor A, Martinez-Salamero L. Modeling and design rules of a two-cell buck converter under a digital PWM controller. IEEE Transactions on Power Electronics 2008; 23, (2): pp. 859-870. doi:10.1109/TPEL.2007.915162.
  • [15] Salinas F, Gonzalez MA, Escalante MF. Voltage balancing scheme for flying capacitor multilevel converters. IET Power Electronics 2013; 6, (5): pp. 835-842. doi:10.1049/iet-pel.2012.0644
  • 16] Bonanno G, Corradini L. Digital predictive peak current-mode control for three-level buck converters. In: 20th Workshop on Control and Modeling for Power Electronics (COMPEL); Toronto, ON, Canada; 2019. pp. 1-7.
  • [17] Abdelhamid E, Corradini L, Mattavelli P, Bonanno G, Agostinelli M. Sensorless stabilization technique for peak current-mode controlled three-level flying capacitor converters. IEEE Transactions on Power Electronics 2019; 35 (3): pp. 3208-3220. doi: 10.1109/TPEL.2019.2930011.
  • [18] Ugur A, Yilmaz M. Digital hybrid current mode control for DC–DC converters. IET Power Electronics 2019; 12, (4): pp. 891-898. doi: 10.1049/iet-pel.2018.6035.
  • [19] Yan Y, Lee FC, Mattavelli P, Liu H. I2 average current mode control for switching converters. IEEE Transactions on Power Electronics 2014; 29, (4): pp. 2027-2036. doi: 10.1109/TPEL.2013.2265381.
  • [20] Ugur A, Yilmaz M. Digital hybrid current mode control with asymmetric slope compensation for three-level flying capacitor buck converter. In: Int. Aegean Conf. Electr. Mach. Power Electron. (ACEMP) and Int. Conf. Optim. Elect. Electron. Equip. (OPTIM); Istanbul, Turkey; 2019. pp. 1-7.
  • [21] Chattopadhyay S, Das S. A digital current-mode control technique for DC-DC converters. IEEE Transactions on Power Electronics 2006; 21, (6): pp. 1718-1726. doi: 10.1109/TPEL.2006.882929.
  • [22] Calderon-Lopez G, Villarruel-Parra A, Kakosimos P, Ki SK, Todd R, Forsyth AJ: Comparison of digital PWM control strategies for high-power interleaved DC-DC converters. IET Power Electronics 2018; 11, (2): pp. 391-398. doi: 10.1049/iet-pel.2016.0886.
  • [23] Penczek A, Mondzik A, Stala R, Ruderman A. Simple time-domain analysis of a multilevel DC-DC flying capacitor converter average aperiodic natural balancing dynamics. IET Power Electronics 2019; 12, (5): pp. 1179-1186. doi: 10.1049/iet-pel.2018.5070.
  • [24] Biswas S, Reusch D. GaN based switched capacitor three-level buck converter with cascaded synchronous bootstrap gate driver scheme. In: IEEE Energy Conversion Congress and Exposition (ECCE); Portland, OR, USA; 2018. pp. 3490-3496.
  • [25] Ye Z, Lei Y, Liu W, Shenoy PS, Pilawa-Podgurski RCN. Design and implementation of a low-cost compact floating gate drive power circuit for GaN-based flying capacitor multi-level converters. In: IEEE Applied Power Electronics Conference and Exposition (APEC); Tampa, FL, USA; 2017. pp. 2925-2931.
  • [26] Vukadinović N, Prodić A, Miwa BA, Arnold CB, Baker MW. Skip-duty control method for minimizing switching stress in low-power multi-level Dc-Dc converters. In: 16th Workshop on Control and Modeling for Power Electronics (COMPEL); Vancouver, BC, Canada; 2015. pp. 1-7.
  • [27] Lu L, Prodić A, Calabrese G, Frattini G, Granato M. Current programmed mode control of multi-level flying capacitor converter near zero-ripple current region. IEEE Applied Power Electronics Conference and Exposition (APEC); Anaheim, CA, USA; 2019. pp. 3064-3070.
  • [28] Hallworth M, Shirsavar SA. Microcontroller-based peak current mode control using digital slope compensation. IEEE Transactions on Power Electronics 2012; 27, (7): pp. 3340-3351. doi: 10.1109/TPEL.2011.2182210.