Assessing wind energy potential using finite mixture distributions

Assessing wind energy potential using finite mixture distributions

Wind has become a popular renewable energy resource in the last two decades. Wind speed modeling is acrucial task for investors to estimate the energy potential of a region. The aim of this paper was to compare the popularunimodal wind speed distributions with their two-component mixture forms. Accordingly, Weibull, gamma, normal,lognormal distributions, and their two-component mixture forms; two-component mixture Weibull, two-componentmixture gamma, two-component mixture normal, and two-component mixture lognormal distributions were employed tomodel wind speed datasets obtained from Belen Wind Power Plant and Gökçeada Meteorological Station. This paperalso provides the comparison of gradient-based and gradient-free optimization algorithms for maximum likelihood (ML)estimators of the selected wind speed distributions. ML estimators of the distributions were obtained by using Newton–Raphson, Broyden–Fletcher–Goldfarb–Shanno, Nelder–Mead, and simulated annealing algorithms. Fit performanceswere compared based on Kolmogorov–Smirnov test, root mean square error, coefficient of determination (R2), and power density error criteria. Results reveal that two-component mixture wind speed distributions have superiority over the unimodal wind speed distributions.

___

  • [1] Çelik, AN. A techno-economic analysis of wind energy in Southern Turkey. Int J Green Energy 2007; 4 (3): 233-247. doi: 10.1080/15435070701338358
  • [2] Akpınar S, Akpınar EK. Estimation of wind energy potential using finite mixture distribution models. Energ Convers Manage 2009; 50 (4): 877-884. doi: 10.1016/j.enconman.2009.01.007
  • [3] Kaygusuz K. Renewable and sustainable energy use in Turkey: a review. Renew Sust Energ Rev 2002; 6 (4): 339-366. doi: 10.1016/S1364-0321(01)00007-7
  • [4] Arslan T, Bulut YM, Yavuz AA. Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renew Sust Energ Rev 2014; 40: 820-825. doi: 10.1016/j.rser.2014.08.009
  • [5] IEA (International Energy Agency). Renewables Information 2016, Paris, France: IEA, 2016. doi: 10.1787/renew2016-en
  • [6] Safari B. Modeling wind speed and wind power distributions in Rwanda. Renew Sust Energ Rev 2011; 15 (2): 925-935. doi: 10.1016/j.rser.2010.11.001
  • [7] Hou Y, Peng Y, Johnson AL, Shi J. Empirical analysis of wind power potential at multiple heights for North Dakota wind observation sites. Energ Sci Tech 2012; 4 (1): 1-9. doi: 10.3968/j.est.1923847920120401.289
  • [8] Sohoni V, Gupta S, Nema R. A comparative analysis of wind speed probability distributions for wind power assessment of four sites. Turk J Elec Eng & Comp Sci 2016; 24 (6): 4724-4735. doi: 10.3906/elk-1412-207
  • [9] Kaplan YA. The evaluating of wind energy potential of Osmaniye region with using Weibull and Rayleigh distributions. SDU J Nat Appl Sci 2016; 20 (1): 62-71 (in Turkish with an abstract in English). doi: 10.19113/sdufbed.63806
  • [10] Köse R, Özgur MA, Erbaş O, Tuğcu A. The analysis of wind data and wind energy potential in Kütahya, Turkey. Renew Sust Energ Rev 2004; 8 (3): 277-288. doi: 10.1016/j.rser.2003.11.003
  • [11] Çelik AN. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renew Energ 2003; 29 (4): 593-604. doi: 10.1016/j.renene.2003.07.002
  • [12] Akpınar EK, Akpınar S. Determination of the wind energy potential for Maden-Elazığ, Turkey. Energ Convers Manage 2004; 45 (18-19): 2901-2914. doi: 10.1016/j.enconman.2003.12.016
  • [13] Gökçek M, Bayülken A, Bekdemir Ş. Investigation of wind characteristics and wind energy potential in Kırklareli, Turkey. Renew Energ 2007; 32 (10): 1739-1752. doi: 10.1016/j.renene.2006.11.017
  • [14] Akgül FG, Şenoğlu B, Arslan T. An alternative distribution to Weibull for modeling wind speed data: Inverse Weibull distribution. Energ Convers Management 2016; 114: 234-240. doi: 10.1016/j.enconman.2016.02.026
  • [15] Kantar YM, Usta İ. Analysis of wind speed distributions: wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function. Energ Convers Manage 2008; 49 (5): 962-973. doi: 10.1016/j.enconman.2007.10.008
  • [16] Kantar YM, Usta İ. Analysis of the upper-truncated Weibull distribution for wind speed. Energ Convers Manage 2015; 96: 81-88. doi: 10.1016/j.enconman.2015.02.063
  • [17] Mert İ, Karakuş C. A statistical analysis of wind speed data using Burr, generalized gamma, and Weibull distributions in Antakya, Turkey. Turk J Elec Eng & Comp Sci 2014; 23 (6): 1571-1586. doi: 10.3906/elk-1402-66
  • [18] Arslan T, Acıtaş Ş, Şenoğlu B. Generalized Lindley and power Lindley distributions for modeling the wind speed data. Energ Convers Manage 2017; 152: 300-311. doi: 10.1016/j.enconman.2017.08.017
  • [19] Kantar YM, Usta İ, Arık İ, Yenilmez İ. Wind speed analysis using the extended generalized Lindley distribution. Renew Energ 2018; 118: 1024-1030. doi: 10.1016/j.renene.2017.09.053
  • [20] Morgan EC, Lackner M, Vogel RM, Baise LG. Probability distributions for offshore wind speeds. Energ Convers Manage 2011; 52 (1): 15-26. doi: 10.1016/j.enconman.2010.06.015
  • [21] Kollu R, Rayapudi SR, Narasimham SVL, Pakkurthi KM. Mixture probability distribution functions to model wind speed distributions. Int J of Energy Environ Eng 2012; 3 (1): 27. doi: 10.1186/2251-6832-3-27
  • [22] Carta JA, Ramirez P. Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago. Energ Converse Manage 2007; 48 (1): 281-291. doi: 10.1016/j.enconman.2006.04.004
  • [23] Usta İ, Kantar YM. Analysis of some flexible families of distributions for estimation of wind speed distributions. Appl Energ 2012; 89 (1): 355-367. doi: 10.1016/j.apenergy.2011.07.045
  • [24] Chang, TP. Estimation of wind energy potential using different probability density functions. Appl Energ 2011; 88 (5): 1848-1856. doi: 10.1016/j.apenergy.2010.11.010
  • [25] Akdağ SA, Bagiorgas HS, Mihalakakou G. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean. Appl Energ 2010; 87 (8): 2566-2573. doi: 10.1016/j.apenergy.2010.02.033
  • [26] Jaramillo OA, Borja MA. Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renew Energ 2004; 29 (10): 1613-1630. doi: 10.1016/j.renene.2004.02.001
  • [27] Shin JY, Ouarda TBMJ, Lee T. Heterogeneous mixture distributions for modeling wind speed, application to the UAE. Renew Energ 2016; 91: 40-52. doi: 10.1016/j.renene.2016.01.041
  • [28] Mazzeo D, Oliveti G, Labonia E. Estimation of wind speed probability density function using a mixture of two truncated normal distributions. Renew Energ 2018; 115: 1260-1280. doi: 10.1016/j.renene.2017.09.043
  • [29] Henningsen A, Toomet O. maxLik: A package for maximum likelihood estimation in R. Computation Stat 2010; 26 (3): 443-458. doi: 10.1007/s00180-010-0217-1
  • [30] Broyden CG. The convergence of a class of double-rank minimization algorithms 1. general considerations. J Inst Math Appl 1970; 6 (1): 76-90. doi: 10.1093/imamat/6.1.76
  • [31] Fletcher R. A new approach to variable metric algorithms. Comput J 1970; 13 (3): 317-322. doi: 10.1093/comjnl/13.3.317
  • [32] Goldfarb D. A family of variable metric updates derived by variational means. Math Comput 1970; 24 (109): 23-26. doi: 10.2307/2004873
  • [33] Shanno DF. Conditioning of quasi-newton methods for function minimization. Math Comput 1970; 24 (111): 647- 656. doi: 10.2307/2004840
  • [34] Nelder JA, Mead R. A simplex algorithm for function minimization. Comput J 1965; 7 (4): 308-313. doi: 10.1093/comjnl/7.4.308
  • [35] Kirkpatrick S, Gelatt Jr CD, Vecchi PM. Optimization by simulated annealing. Science 1983; 220 (4598): 671-680. doi: 10.1126/science.220.4598.671
  • [36] Massey Jr FJ. The Kolmogorov-Smirnov Test for Goodness of Fit. J Am Stat Assoc 1951; 46 (253): 68-78. doi:10.1080/01621459.1951.10500769