Adaptiv Adaptive fast sliding neur e fast sliding neural contr al control for r ol for robot manipulat obot manipulator

Adaptiv Adaptive fast sliding neur e fast sliding neural contr al control for r ol for robot manipulat obot manipulator

Robotic manipulators are open to external disturbances and actuation failures during performing a task such as trajectory tracking. In this paper, we present a modifed controller consisting of a global fast sliding surface combined with an adaptive neural network which is called adaptive fast sliding neural control (AFSNC) for a robotic manipulator to precise stable trajectory tracking performance under the external disturbances. The adaptive term is employed to reduce uncertainties due to unmodeled dynamics. Tracking error asymptotically converges to zero according to the Lyapunov stability theorem. Numerical examples have been carried on a planar two-links manipulator to verify the control approach efficiency. The experimental results show that the proposed control approach performs satisfactory trajectory tracking and tracks the desired trajectory in less time with reduced chattering effect compared to the other methods.

___

  • [1] Kelly R. A tuning procedure for stable pid control of robot manipulators. Robotica 2015; 13 (2): 141-148.
  • [2] Parra VV, Arimoto S, Liu YH, Hirzinger G, Akella P. Dynamic sliding pid control for tracking of robot manipulators: theory and experiments. IEEE Transactions on Robotics and Automation 2003; 19 (6): 967-976 .
  • [3] He W, Dong Y, Sun C. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Transactions on Systems, Man and Cybernetics Systems 2016; 46 (3): 334-344.
  • [4] Achili B, Daachi B, Amirat Y, Cherif A. A robust adaptive control of a parallel robot. International Journal of Control 2010; 83 (10): 2107-2119. doi: 10.1080/00207179.2010.505965
  • [5] Wang F, Chao Z, Huang LB, Li HY, Zhang CQ. Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode. Cluster Computing 2017; 22 (3): 5799-5809.
  • [6] Zhao D, Li S, Gao F. A new terminal sliding mode control for robotic manipulators. International Journal of Control 2009; 82 (10): 1804-1813.
  • [7] Cervantes I, Alvarez-Ramirez J. On the pid tracking control of robot manipulators. Systems & Control Letters 2001; 42 (1): 37-46.
  • [8] Song Z, Yi J, Zhao D, Li X. A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets and Systems 2005; 15 (2): 208-226.
  • [9] Yang Z, Wu J, Mei J. Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics 2007; 17 (7): 381-390.
  • [10] Mrad FT, Ahmad S. Adaptive control of flexible joint robots using position and velocity feedback. International Journal of Control 1992; 55 (5): 1255-1277.
  • [11] Zeinali M, Notash L. Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mechanism and Machine Theory 2010; 45 (1): 80-90.
  • [12] Kali Y, Saad M, Benjelloun K, Benbrahim M. Sliding mode with time delay control for robot manipulators. In: Derbel N, Ghommam J, Zhu Q (editors). Applications of Sliding Mode Control. Studies in Systems, Decision and Control. Singapore: Springer, 2017, pp. 135-156.
  • [13] Asl RM, Hagh YS, Palm R. Robust control by adaptive non-singular terminal sliding mode. Engineering Applications of Artificial Intelligence 2017; 59: 205-217.
  • [14] Neila MBR, Tarak D. Adaptive terminal sliding mode control for rigid robotic manipulators. International Journal of Automation and Computing 2011; 8 (2): 215-220.
  • [15] Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators. Automatica 2002; 38 (12): 2159-2167.
  • [16] Yu S, Yu X, Shirinzadeh B, Man Z. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005; 41 (11): 1957-1964.
  • [17] Utkin V, Shi J. Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of 35th IEEE Conference on Decision and Control; Kobe, Japan; 1996. pp. 4591-4596.
  • [18] Yu X, Zhihong M. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2002; 49 (2): 261-264.
  • [19] Baek J, Jin M, Han S. A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Transactions on Industrial Electronics 2016; 63 (6): 3628-3637.
  • [20] Hutama I, Kuo CH. Adaptive sliding mode control of a 6-dof rled robot manipulator with uncertain parameters and external disturbances. International Journal of Automation and Smart Technology 2016; 6 (1): 13-24.
  • [21] Wang H. Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Transactions on Automatic Control 2017; 62 (2): 948-954.
  • [22] Mobayen S. An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dynamics 2015; 82: 599-610. doi: 10.1007/s11071- 015-2180-4
  • [23] Salah L, Plestan F, Glumineau A. Higher order sliding mode control based on integral sliding mode. Automatica 2007; 43 (2): 531-537.
  • [24] Zhang L, Liu L, Wang Z, Xia Y. Continuous finite-time control for uncertain robot manipulators with integral sliding mode. IET Control Theory and Applications 2018; 12 (11): 1621-1627.
  • [25] Kachroo P, Tomizuka M, Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Transactions on Automatic Control 1996; 41 (7): 1063-1068.
  • [26] Wang L, Chai T, Zhai L. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Transactions on Industrial Electronics 2009; 56 (9): 3296-3304.
  • [27] Lin FJ, Shen PH. Robust fuzzy neural network sliding-mode control for two-axis motion control system. IEEE Transactions on Industrial Electronics 2006; 53 (4): 1209-1225.
  • [28] Akyüz IH, Bingül Z, Kizir S. Cascade fuzzy logic control of a single-link flexible-joint manipulator. Turkish Journal of Electrical Engineering & Computer Sciences 2012; 20(5): 713-726.
  • [29] Sun G, Gao H, He W, Yu Y. Fuzzy neural network control of a flexible robotic manipulator using assumed mode method. IEEE Transactions on Neural Networks and Learning Systems 2018; 29 (11): 5214-5227.
  • [30] Fei J, Ding H. Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dynamics 2012; 70 (2): 1563-1573.
  • [31] Wai RJ, Muthusamy R. Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Transactions on Neural Networks and Learning Systems 2012; 24 (2): 274-287.
  • [32] Shtessel Y, Edwards C, Fridman L, Levant A. Conventional sliding mode observers. In: William SL (editor). Sliding Mode Control and Observation. Birkhäuser, NY, USA: Springer, 2014, pp.105-141.
  • [33] Spurgeon SK. Sliding mode observers: a survey. International Journal of Systems Science 2008; 39 (8): 751-764.
  • [34] Chen WH, Yang J, Guo L, Li S. Disturbance-observer-based control and related methods—an overview. IEEE Transactions on Industrial Electronics 2016; 63 (2): 1083-1095.
  • [35] Chairez I, Poznyak A, Poznyak T. New sliding-mode learning law for dynamic neural network observer. IEEE Transactions on Circuits and Systems II: Express Briefs 2006; 53 (12): 1338-1342.
  • [36] Lewis FL, Lewis DM, Abdallah CT. Neural Network Control of Robots. In: Munro N, Lewis LL (editors). Robot Manipulator Control: Theory and Practice. 2nd ed. New York, NY, USA: CRC Press, 2004, pp.431-462.
  • [37] Liang X, Li S, Fei J. Adaptive fuzzy global fast terminal sliding mode control for microgyroscope system. IEEE Access 2016; 4: 9681-9688.
  • [38] Liu J, Wang X. RBF Network Adaptive Sliding Mode Control for Manipulator. In: Liu J, Wang X (editors). Advanced Sliding Mode Control for Mechanical Systems. Berlin, Germany: Springer, 2012, pp. 300-313.
  • [39] Sun T, Pei H, Pan Y, Zhou H, Zhang C. Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 2011; 74 (14-15): 2377-2384.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Estimating synthetic load profile based on student behavior using fuzzy inference system for demand side management application

Nadhirah OMAR, Mohd Aifaa MOHD ARIFF, Ainnur Farah Izzati MOHD SHAH, Muhammad Syafiq Anwar MUSTAZA

Effects of sliding mode contr ects of sliding mode control antir ol antiretroviral drug on HIV al drug on HIV-1 viral load

Musharif AHMED, Saad ZAFAR, Muhammad Aamer SALEEM, Muhammad ZUBAIR, Ijaz Mansoor QURESHI

A detailed sur A detailed survey of Turkish aut urkish automatic speech r omatic speech recognition ecognition

Necaattin BARIŞÇI, Recep Sinan ARSLAN

Gated recurrent unit based demand response for preventing voltage collapse in a distribution system

Venkateswarlu GUNDU, Sishaj pulikottil SIMON, Kinattingal SUNDARESWARAN, Srinivasa rao nayak PANUGOTHU

Influence of varying magnet pole-arcs and step-skew on permanent magnet AC synchronous motor performance

Yücel DEMİR, Metin AYDIN, Oğuzhan OCAK

An intelligent diagnostic method based on optimizing B-cell pool clonal selection classification algorithm

Chao LAN, Hongli ZHANG, Xin SUN, Zhongyuan REN

An energy-efficient lightweight security protocol for optimal resource provenance in wir enance in wireless sensor networks eless sensor networks

Sujesh LAL, Joe PRATHAP

Efficient Turkish tweet classification system for crisis response

Saed ALQARALEH, Merve IŞIK

Design of a miniaturized planar microstrip Wilkinson power divider with harmonic cancellation

Saeedeh LOTFI, Saeed ROSHANI, Sobhan ROSHANI

Analysis of biometric data using watermarking techniques

Barış ÖZYER, Foday JORH, Claude FACHKHA