A novel approach of order diminution using time moment concept with Routh array and salp swarm algorithm

A novel approach of order diminution using time moment concept with Routh array and salp swarm algorithm

In control engineering, there may be two systems that have the same input-output characteristic with different degrees of complexity. This concept leads to order diminution(OD) of a large scale system. In this article, the authors propose a new hybrid order diminution technique based on the time moment matching method with the Routh array concept and a recently developed fast and accurate salp swarm optimization (SSO) technique. The proposed method combines the advantages of both the classical method of OD and the optimization technique. The unknown coefficient of the divisor of the reduced system is obtained by exploring the time moment matching methodology with the Routh array concept, whereas the unknown coefficients of dividend polynomial are obtained by the SSO technique. The time moment matching with the Routh array ensures the nature of the system in terms of stability, and better search capability of the SSO technique reduces the error between the original and the diminished system. The proposed technique is tested on different benchmark problems, including a time-delay system. An intensive comparative study in terms of different errors, time, and frequency domain provides better performance of the proposed method compared to the existing techniques. A good match to the parameters of transient specifications indicates the success of this proposed technique. Comparatively, the matching of rise time, settling time, and maximum overshoots are 99.6076% , 99.1611% , and 100% , respectively

___

  • [1] Davison E. A method for simplifying linear dynamic systems. IEEE Transactions on Automatic Control 1966; 11(1):93-101.
  • [2] Marshall SA. An approximate method for reducing the order of a linear system. Control Engineering Practice 1966; 10:642-648.
  • [3] Fossard A. On a method for simplifying linear dynamic systems. IEEE Transactions on Automatic Control 1970; 15(2):261-262.
  • [4] Davidson AM, Lucas TN. Linear-system reduction by continued-fraction expansion about a general point. Elec- tronics Letters 1974; 11;10(14):271-273.
  • [5] Krishnamurthy V, Seshadri V. Model reduction using the Routh stability criterion. IEEE Transactions on Automatic Control 1978; 23(4):729-731. doi: 10.1109/TAC.1978.1101805.
  • [6] Shamash Y. Model reduction using the Routh stability criterion and the Padé approximation technique. Interna- tional Journal of Control 1975; 21(3):475-484.
  • [7] Jayanta P, Sarvesh B,Ghosh MK. A new mixed method for the reduction of high-order systems. In: NSC-94 ROC. of the National Systems Conference; India; 1994. pp. 667-670.
  • [8] Prajapati AK, Prasad R. Order reduction in linear dynamical systems by using improved balanced realization technique. Circuits, Systems, and Signal Processing 2019; 38:1-15. doi: 10.1007/s00034-019-01109-x
  • [9] Eitelberg E. Comments on model reduction by minimizing the equation error. IEEE Transactions on Automatic Control 1982; 27(4):1000-1002. doi: 10.1109/TAC.1982.1103048
  • [10] Bhaumik A, Kumar Y, Srivastava S, Islam SKM. Performance studies of a separately excited dc motor speed control fed by a buck converter using optimized pi λ d μ controller. In: IEEE 2016 ICCPCT International Conference on Circuit, Power and Computing Technologies; Nagercoil, Andaman and Nicobar Islands, India; 2016. pp. 1-6. doi: 10.1109/ICCPCT.2016.7530297
  • [11] White AS,Kelly C. Optimization of a control algorithm using a simulation package. Microprocessors and Microsys- tems 1994; 18(2):89-94. doi: 10.1016/0141-9331(94)90029-9
  • [12] El-Attar R. Vidyasagar M. Order reduction by l-1-and l-infinity-norm minimization. IEEE Transactions on Auto- matic Control 1978; 23(4):731-734. doi: 10.1109/TAC.1978.1101830
  • [13] Eitelberg E. Model reduction by minimizing the weighted equation error. International Journal of Control 1981; 34(6):1113-1123. doi: 10.1080/00207178108922585
  • [14] Philip B. Pal J. An evolutionary computation based approach for reduced order modelling of linear systems. In: IEEE 2010 International Conference on Computational Intelligence and Computing Research; Tirunelveli, India; 2010. pp. 1-8. doi: 10.1109/ICCIC.2010.5705729
  • [15] Golberg DE. Genetic algorithms in search, optimization, and machine learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. 1989.
  • [16] Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE ICNN’95 International Conference on Neural Networks; Perth, WA, Australia; 1995 pp. 1942-1948. doi: 10.1109/ICNN.1995.488968
  • [17] Lee KS, Geem ZW. A new structural optimization method based on the harmony search algorithm. Computers & Structures 2004; 82(9-10):781-798. doi: 10.1016/j.compstruc.2004.01.002
  • 18] Sikander A, Prasad BR. A novel order reduction method using cuckoo search algorithm. IETE Journal of Research 2015; 61(2):83–90. doi:10.1080/03772063.2015.1009396
  • [19] Ahamad N, Sikander A, Singh G. Substructure preservation based approach for discrete time system approximation. Microsystem Technologies 2019; 25(2):641-649. doi:10.1007/s00542-018-3985-0
  • [20] Biradar S, Hote YV, Saxena S. Reduced-order modeling of linear time invariant systems using big bang big crunch optimization and time moment matching method. Applied Mathematical Modelling 2016; 40(15-16):7225-7244. doi:10.1016/j.apm.2016.03.006
  • [21] Abu-Al-Nadi D, Alsmadi OM, Abo-Hammour ZS. Reduced order modeling of linear mimo systems using particle swarm optimization. In: ICAS 2011 The 7th International Conference on Autonomic and Autonomous Systems: Venice/Mestre, Italy; 2011. pp. 3-7.
  • [22] Desai SR, Prasad R. A novel order diminution of lti systems using big bang big crunch optimization and routh approximation. Applied Mathematical Modelling 2013; 37(16-17):8016-8028. doi:10.1016/j.apm.2013.02.052
  • [23] Ganguli S, Kaur G, Sarkar P. A hybrid intelligent technique for model order reduction in the delta domain: a unified approach. Soft Computing 2018; 23 (13): 1-14. doi: 10.1007/s00500-018-3137-6
  • [24] Pal J. Improved Pade approximants using stability equation method. Electronics Letters 1983; 19(11):426-7.
  • [25] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H et al. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software 2017; 114:163-191. doi: 10.1016/j.advengsoft.2017.07.002
  • [26] Prajapati AK, Prasad R. Reduced order modelling of linear time invariant systems using the factor di- vision method to allow retention of dominant modes. IETE Technical Review 2019; 36(5):449-462. doi: 10.1080/02564602.2018.1503567
  • [27] Chahlaoui Y, Van Dooren P. Benchmark examples for model reduction of linear time-invariant dynamical systems. In: Dimension Reduction of Large-Scale Systems; Berlin, Heidelberg; 2005. pp. 379-392.
  • [28] Sikander A. Reduced Order Modelling for Linear Systems and Controller Design. PhD, Indian Institute of Tech- nology Roorkee, Roorkee, India, 2016.
  • [29] Sikander A, Prasad R. A new technique for reduced-order modelling of linear time-invariant system. IETE Journal of Research 2017; 63(3):316–324. doi: 10.1080/03772063.2016.1272436
  • [30] Singh J, Vishwakarma CB,Chattterjee K. Biased reduction method by combining improved modified pole clustering and improved Padé approximations. Applied Mathematical Modelling 2016; 40(2):1418–1426. doi: 10.1016/j.apm.2015.07.014
  • [31] Sikander A, Prasad R. Linear time-invariant system reduction using a mixed methods approach. Applied Mathe- matical Modelling 2015; 39(16):4848–4858. doi: 10.1016/j.apm.2015.04.014.
  • [32] Kumar DK, Nagar SK, Tiwari JP. A new algorithm for model order reduction of interval systems. Bonfring International Journal of Data Mining 2013; 3(1):06-11. doi: 10.9756/BIJDM.10131
  • [33] Vishwakarma CB, Prasad R. Order reduction using modified pole clustering and Padé approximations. World Academy of Science, Engineering and Technology 2011; 56:787-91. doi: 10.5281/zenodo.1059535
  • [34] Vishwakarma CB, Prasad R. Clustering method for reducing order of linear system using Padé approximation. IETE Journal of Research 2008; 54(5):326-30. doi: 10.4103/0377-2063.48531
  • [35] Singh N, Prasad R, Gupta HO. Reduction of linear dynamic systems using Routh Hurwitz array and factor division method. IETE Journal of Education 2006; 47(1):25-9. doi: 10.1080/09747338.2006.11415859
  • [36] Sinha AK, Pal J. Simulation based reduced order modelling using a clustering technique. Computers & Electrical Engineering 1990; 16(3):159-69. doi: 10.1016/0045-7906(90)90020-G
  • 37] Gutman P, Mannerfelt C, Molander P. Contributions to the model reduction problem. IEEE Transactions on Automatic Control 1982; 27(2):454-5. doi: 10.1109/TAC.1982.1102930
  • [38] Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control 1981; 26(1):17-32. doi: 10.1109/TAC.1981.1102568 [39] Smamash Y. Truncation method of reduction: a viable alternative. Electronics Letters 1981; 17(2):97-9. doi: 10.1049/el:19810070
  • [40] Chen TC, Chang CY, Han KW. Model reduction using the stability-equation method and the Padé approximation method. Journal of the Franklin Institute 1980; 309(6):473-90. doi: 10.1080/00207178008922845
  • [41] Chen TC, Chang CY, Han KW. Reduction of transfer functions by the stability-equation method. Journal of the Franklin Institute 1979; 308(4):389-404. doi: 10.1016/0016-0032(79)90066-8
  • [42] Shamash Y. Multivariable system reduction via modal methods and Padé approximation. IEEE Transactions on Automatic Control 1975; 20(6):815-7. doi: 10.1109/TAC.1975.1101090
  • [43] Shamash Y. Stable reduced-order models using Padé-type approximations. IEEE ransactions on Automatic Control 1974; 19(5):615-6. doi: 10.1109/TAC.1974.110066
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK