Shallow crust structure of the Büyük Menderes graben through an analysis of gravity data

The Büyük Menderes is one of the most important geostructural features of highly seismically active western Anatolia, Turkey. This article aims to analyze the geological features and the shallow crust structure of the Büyük Menderes graben. To achieve this, six different edge detection filters and a 3D inversion method were applied to the Bouguer gravity data to detect new lineaments and shallow crust topographies. A renewed fault map of the Büyük Menderes graben is the significant contribution of the present study. New lineaments were detected in the western, southeastern, and northern parts of the region, where intense seismicity was observed. The basement, the upper-lower crust undulation, and their relations were analyzed in detail. The maximum sediment thickness was defined as 4.1 km. The subsurface depths are increasing in N-S and W-E directions. The new determined lineaments may be a topic of future research to warrant attention.

___

  • Akay T, Bilim F, Koşaroğlu S (2013). Investigation of the tectonic structures of Menderes massive (Western Anatolia, Turkey) by means of Bouguer gravity analysis. Cumhuriyet Yerbilimleri Dergisi 30: 71-86 (in Turkish with abstract in English).
  • Ali MY, Fairhead JD, Green CM, Noufal A (2017). Basement structure of the United Arab Emirates derived from an analysis of regional gravity and aeromagnetic database. Tectonophysics 712-713: 503-522.
  • Altınoğlu FF, Aydın A (2015). Interpretation of deep crust structure and linear features of western Anatolia by using Bouguer gravity data. Proceedings of Azerbaijan National Academy of Sciences, Sciences of Earth 3: 46-53.
  • Altınoğlu FF, Sari M, Aydın A (2015). Detection of lineaments in Denizli basin of western Anatolia using Bouguer gravity data. Pure Appl Geophys 172: 415-425.
  • Alvandi A, Babaei M (2017). Edge detection of gravity anomalies with directional hyperbolic tilt angles: application to synthetic and field data. J Ind Geophys Union 21: 13-16.
  • Alvandi A, Rasoul H (2014). Edge detection process of Qom salt dome gravity anomalies using hyperbolic tilt angle. International Journal of Geomatics and Geosciences 5: 209-224.
  • Ardestani VE (2005). Gravity interpretation via gravity gradients and analytic signal, J Earth Sci 12: 54.
  • Ardestani VE, Motavalli H (2007). Constraints of analytic signal to determine the depth of gravity anomalies. J Earth Space Phys 33: 77-83.
  • Arısoy MO, Dikmen U (2011). Potensoft: MATLAB-based software for potential field data processing, modeling and mapping. Comput Geosci 37: 935-942.
  • Bayrak E, Yılmaz S, Bayrak Y (2017). Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia. Turkey. J Asian Earth Sci 138: 1-11.
  • Bosum W, Damaske D, Roland NW, Behrendt J, Saltus R (1989). The Ganovex IV Victoria Land/Ross Sea aeromagnetic survey: interpretation of anomalies. Geol Jahrb E 38: 153-230.
  • Bozkurt E, Sözbilir H (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geol Mag 141: 63-79.
  • Bozkurt E, Sözbilir H (2006). Evolution of the large-scale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics. Geodin Acta 19: 427-453.
  • Chen G, Liu T, Sun J, Cheng Q, Sahoo B, Zhang Z, Zhang H (2015). Gravity method for investigating the geological structures associated with W–Sn polymetallic deposits in the Nanling Range. China J Appl Geophys 120: 14-25.
  • Cheyney S, Hill I, Linford N (2011). Advantages to using the pseudogravity transformation to aid edge detection of total field archaeomagnetic datasets. Archaeol Prosp 18: 81-93.
  • Çifçi G, Pamukçu O, Çoruh C, Çopur S, Sözbilir H (2011). Shallow and deep structure of a supradetachment basin based on geological, conventional deep seismic reflection sections and gravity data in the Büyük Menderes Graben, western Anatolia. Surv Geophys 32: 271-290.
  • Çiftçi NB, Bozkurt E (2009). Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Res 22: 846-873.
  • Cohen HA, Dart CJ, Akyuz HS, Barka A (1995). Syn-rift sedimentation and structural development of the Gediz and Büyük Menderes graben, western Turkey. J Geol Soc London 152: 629-638.
  • Connard G, Couch R, Gemperle M (1983). Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48: 376-390.
  • Cooper G, Cowan D (2004). Filtering using variable order vertical derivatives. C R Geosci 30: 455-459.
  • Cooper GRJ, Cowan DR (2006). Enhancing potential field data using filters based on the local phase. Comput Geosci 32: 1585-1591.
  • Cordell L (1979). Gravimetric expression of graben faulting in Santa Fe country and the Espanola Basin, New Mexico. In: New Mexico Geological Society 30th Field Conference Guidebook. Socorro, NM, USA: New Mexico Geological Society, pp. 59-64.
  • Cordell L, Grauch VJS (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze, WJ, editor. The Utility of Regional Gravity and Magnetic Anomaly Maps. Tulsa, OK, USA: Society of Exploration Geophysicists, pp. 181-197.
  • Çubuk-Sabuncu Y, Taymaz T, Fichtner A (2017). 3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography. Phys Earth Planet Inter, 270: 90-112.
  • Dewey JF, Şengör AMC (1979). Aegean and surrounding regions: complex and multiple continuum tectonics in a convergent zone. Geol Soc Am Bull 90: 84-92.
  • Duman TY, Emre Ö (2011). 1:250,000 Scale Active Fault Map Series of Turkey, Aydın (NJ 35-11) Quadrangle. Serial Number: 7. Ankara, Turkey: General Directorate of Mineral Research and Exploration.
  • Elmas A, Karslı H, Kadirov FA (2018). Lineaments in the Shamakhy– Gobustan and Absheron hydrocarbon containing areas using gravity data. Acta Geophys 66: 39-49.
  • Emre Ö, Duman TY, Özalp S, Elmacı H (2011). 1:250,000 Scale Active Fault Map Series of Turkey, Denizli (NJ 35-12) Quadrangle. Serial Number: 12. Ankara, Turkey: General Directorate of Mineral Research and Exploration.
  • Garcia-Abdeslem J, Ness GE (1994). Inversion of the power spectrum from magnetic anomalies. Geophysics 59: 391-401.
  • Göktürkler G, Salk M, Sari C (2003). Numerical modeling of the conductive heat transfer in western Anatolia. J. Balkan Geophy Soc 6:1-15.
  • Gómez-Ortiz D, Agarwal BNP (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker-Oldenburg’s algorithm. Comput Geosci 31: 513-520.
  • Gout RE, Khattach D, Houari MR, Kaufmann O, Aqil H (2010). Main structural lineaments of north-eastern Morocco derived from gravity and aeromagnetic data. J African Earth Sci 58: 255-271.
  • Guo LH, Meng XH, Zhang GL (2014). Three-dimensional correlation imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization. J Appl Geophys 111: 121-128.
  • Hahn A, Kind EG, Mishra DC (1976). Depth estimation of magnetic sources by means of Fourier amplitude spectra. Geophys Prospect 24: 287-308.
  • Hornby P, Boschetti F, Horovitz FG (1999). Analysis of potential field data in the wavelet domain. Geophys J Int 137: 175-196.
  • Işık M (1997). Değişken yoğunluklu sedimanter basen anomalilerinin ters çözümü. PhD, Kocaeli University, Kocaeli, Turkey.
  • Işık M, Şenel H (2009). 3D gravity modeling of Büyük Menderes basin in western Anatolia using parabolic density function. J Asian Earth Sci 34: 317.
  • Koçyiğit A, Yusufoğlu H, Bozkurt E (1999). Evidence from the Gediz graben for episodic two-stage extension in western Turkey. J Geol Soc London 156: 605-616.
  • Kumar NJ, Singh AP, Rao MRKP, Chandrasekhar DW, Singh B (2009). Gravity signatures derived crustal structure and tectonics of Achankovil shear zone Southern India. Gondwana Res 16: 45-55.
  • Le Pichon X, Angelier J (1979). The Hellenic arc and trench system: A key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60: 1-42.
  • Lyngsie SB, Thybo H, Rasmussen TM (2006). Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics 413: 147-170.
  • Ma G, Li L (2012). Edge detection in potential fields with the normalized total horizontal derivative. Comput Geosci 41: 83- 87.
  • McKenzie DP (1972). Active tectonics of the Mediterranean Region. Geophys J Roy Astron Soc 30: 109-185.
  • Mickus K (2008). Regional gravity analysis of Burkina Faso: Implications for the location of metallic ore deposits. J African Earth Sci 50: 55-66.
  • Miller HG, Singh V (1994). Potential field tilt -a new concept for location of potential field sources. J Appl Geophys 32: 213-217.
  • Nabighian MN (1972). The analytic signal of two dimensional magnetic bodies with polygonal cross section: its properties and use for automated anomaly interpretation. Geophysics 37: 507-517.
  • Nabighian MN, Ander ME, Grauch VJS, Hansen RO, Lafehr TR, Li Y, Pearson WC, Peirce JW, Phillips JD, Ruder ME (2005). Historical development of the gravity method in exploration. Geophysics 70: 63-89.
  • Naouali BS, Inoubli MH, Amiri A, Chaqui A, Hamdi I (2011). Subsurface geology of the Ariana region (Diapir Zone, northern Tunisia) by means of gravity analysis. Geophy Prosp 59: 983-997.
  • Nishijima J, Naritomi K (2015). Interpretation of gravity data to delineate underground structure in the Beppu geothermal field, central Kyushu, Japan. J Hydrology Reg Stud 11: 84-95.
  • Oldenburg DW (1974). The inversion and interpretation of gravity anomalies. Geophysics 39: 526-536.
  • Oruç B (2010). Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure Appl Geophys 168: 1769-1780.
  • Özelçi F (1973). Gravity anomalies of the Eastern Mediterranean. Bulletin of the Mineral Research and Exploration 80: 54-92.
  • Pamukçu O, Yurdakul A (2008). Isostatic compensation in western Anatolia with estimate of the effective elastic thickness. Turk J Earth Sci 17: 545-557.
  • Parker RL (1972). The rapid calculation of potential anomalies. Geophys J R Astr Soc 31: 447-455.
  • Phillips JD (2000). Locating magnetic contacts; a comparison of the horizontal gradient, analytic signal, and local wavenumber methods. Society of Exploration Geophysicists Abstracts with Programs 402-405.
  • Rabinowitz PD, Ryan WBF (1970). Gravity anomalies and crustal shortening in the Eastern Mediterranean. Tectonophysics 10: 285-608.
  • Rapolla A, Cella F, Fedi M, Florio G (2002). Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas. Ann Geophys 45: 6.
  • Roest WR, Verhoef J, Pilkington M (1992). Magnetic interpretation using the 3D analytic signal. Geophysics 57: 116-125.
  • Saibi H, Nishijima J, Ehara S (2006). Processing and interpretation of gravity data for the Shimabara Peninsula area, Southwestern Japan. Mem Fac Eng Kyushu Uni 66: 2.
  • Sarı C, Şalk M (2002). Analysis of gravity anomalies with hyperbolic density contrast: An application to the gravity data of western Anatolia. J Balkan Geophys Soc 5: 87-96.
  • Sarı C, Şalk M (2006). Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data. J Asian Earth Sci 26: 39-48.
  • Şenel H (1997). Inversion of gravity anomaly of Büyük Menderes faults. Journal of Kocaeli University 4: 66-72 (in Turkish with abstract in English).
  • Şengör AMC, Görür N, Şaroğlu F (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Soc Econ Paleontol Min Spec Pub 37: 227-264.
  • Seyitoğlu G, Scott B (1996). The age of the Büyük Menderes graben (west Turkey) and its tectonic implications. Geol Mag 129: 239- 242.
  • Seyitoğlu G, Scott B, Rundle CC (1992). Timing of Cenozoic extensional tectonics in west Turkey. J Geol Soc London 149: 533-538.
  • Sözbilir H (2001). Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz Detachment, Western Turkey. Turk J Earth Sci 10: 51-67.
  • Spector A, Grant FS (1970). Statistical models for interpreting aeromagnetic data. Geophysics 35: 293-302.
  • Uieda L, Barbosa VCF (2012). Robust 3D gravity gradient inversion by planting anomalous densities. Geophysics 77: 55-66.
  • Verduzco B, Fairhead JD, Green CM, MacKenzie C (2004). New insights into magnetic derivatives for structural mapping. Lead Edge 23: 116-119.
  • Wang J, Meng X, Li F (2017). New improvements for lineaments study of gravity data with improved Euler inversion and phase congruency of the field data. J Appl Geophys 136: 326-334.
  • Wang J, Meng XH, Guo LH, Chen ZX, Li F (2014). A correlation- based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising. J Geophys Eng 11: 055007-7.
  • Wang J, Meng XH, Li F (2015). Improved curvature gravity gradient tensor with principal component analysis and its application in edge detection of gravity data. J Appl Geophys 118: 106-114.
  • Wijns C, Perez C, Kowalczyk P (2005). Theta map edge detection in magnetic data. Geophysics 70: 39-43.
  • Yılmaz Y, Genç SC, Gurer OF, Bozcu M, Yılmaz K, Karacık Z, Altunkaynak S, Elmas A (2000). When did the western Anatolian grabens begin to develop? Geo Soc London Spec Publ 173: 353-384.
  • Zuo BX, Hu XY (2015). Edge detection of gravity field using eigenvalue analysis of gravity gradient tensor. J Appl Geophys 114: 263-270.