Mineralogy, alteration, and sulfur isotope geochemistry of the Zehabad intermediatesulfidation epithermal deposit, NW Iran

Mineralogy, alteration, and sulfur isotope geochemistry of the Zehabad intermediatesulfidation epithermal deposit, NW Iran

The Zehabad Pb-Zn-Au-Ag (Cu) deposit lies in the Alborz magmatic arc of northwestern Iran. Ore-bearing breccia veinshosted by Eocene tuffs emplaced along the 80–130° trending fault and fracture zone. Mineralization occurs in the contact of the lateEocene igneous bodies and the Eocene volcanic and volcanosedimentary Karaj Formation. Mineralization formed in five stages: 1)disseminated framboidal pyrite and minor chalcopyrite and sphalerite; 2) quartz veins containing chalcopyrite, bornite, pyrite,and sphalerite; 3) deposition of specularite and gold grains hosted in quartz veins that crosscut chalcopyrite; 4) the main stage ofmineralization that contains galena, sphalerite, tennantite-tetrahedrite, pyrite, sulfosalts, and gold; 5) barren quartz-calcite veins withsulfide mineral fragments of earlier stages. The hydrothermal alteration from closest to the veins outwards includes: a) silicification; b)phyllic with quartz, pyrite, sericite, and calcite; c) argillic with illite, kaolinite, and montmorillonite; d) propylitic containing epidote,calcite, chlorite, and sericite and; e) carbonatization that crosscuts all previous alteration types. Quartz and calcite are the most importantgangue minerals at the deposit and show a close relationship with mineralization. Sulfur isotope compositions (0.8‰ to –10.1‰)suggest that the ore-forming fluids derived from magmatic sources with a temperature range of 276–288 °C. According to the field(macroscopic), microscopic, alteration, and sulfur isotope studies, the Zehabad base and precious metal mineralization is considered anintermediate-sulfidation epithermal deposit.

___

  • Aghajani Marsa S, Emami MH, Lotfi M, Gholizadeh K, Ghasemi Siani M (2015). Source of polymetal epithermal veins at Nikuyeh district (west of Qazvin) based on mineralogy, alteration and fluid inclusion studies. Scientific Quarterly Journal of Geosciences 25: 157–168 (in Persian with English abstract).
  • Amin Khorramdasht Exploration Company (2006). Final Report of Technical Services in Zehabad Pb-Zn Deposit. Internal Report. Tehran, Iran: Amin Khorramdasht Exploration Company (in Persian).
  • Annells RN, Arthurton RS, Bazley RA, Davie, RG (1975). Explanatory Text of the Qazvin and Rasht Quadrangles Map, E3 and E4. Tehran, Iran: Geological Survey of Iran.
  • Annells RS, Arthurton RS, Bazley RAB, Davies RG, Hamedi MAR et al. (1985). Geological Quadrangle Map of Qazvin-Rasht (1:250,000). Tehran, Iran: Geological Survey of Iran.
  • Asiabanha A, Foden F (2012). Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz ranges, N-Iran. Lithos 148: 98-111.
  • Asiabanha A, Ghasemi H, Meshkin M (2009). Paleogene continentalarc type volcanism in north Qazvin, north Iran: facies analysis and geochemistry. Neues Jahrbuch für Mineralogie – Abhandlungen (Journal of Mineralogy and Geochemistry) 186 (2): 201-214.
  • Ballato P, Cifelli F, Heidarzadeh G, Ghassemi M, Wicker A et al. (2017). Tectono-sedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene foreland-basin deposits. Basin Research 29: 417-446.
  • Ballato P, Mulch A, Landgraf A, Strecker MR, Dalconi MC et al. (2010). Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz Mountains, N Iran. Earth and Planetary Science Letters 300: 125-138.
  • Ballato P, Uba CE, Landgraf A, Strecher MR, Sudo M et al. (2011). Arabia-Eurasia continental collision: insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geological Society of America Bulletin 123: 106-131.
  • Bortnikov NS, Genkin AD, Dobrovol’skaya MG, Muravitskaya GN, Filimonova AA (1991). The nature of chalcopyrite inclusions in sphalerite: exsolution, coprecipitation, or “disease”? Economic Geology 86: 1070-1082.
  • Buchanan LJ (1981). Precious metal deposits associated with volcanic environments in the southwest. In: Dickinson WR, Payne WD (editors). Relations of Tectonics to Ore Deposits in the Southern Cordillera. Tucson, AZ, USA: Arizona Geological Society, pp. 237-262.
  • Castro A, Aghazadeh M, Badrzadeh Z, Chichorro M (2013). Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran: an example of monzonite magma generation from a metasomatized mantle source. Lithos 180-181: 109-127.
  • Corbett GJ, Leach TM (1998). Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization (No. 6). Boulder, CO, USA: Society of Economic Geologists.
  • Einaudi MT, Hedenquist JW, Inan EE (2003). Sulfidation state of hydrothermal fluids: the porphyry-epithermal transition and beyond. In: Simmons SF, Graham IJ (editors). Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Tulsa, OK, USA: Society of Economic Geologists and Geochemical Society Special Publications, pp. 285-313.
  • Esmaeli M, Lotfi M, Nezafati N (2015). Fluid inclusion and stable isotope study of the Khalyfehlou copper deposit, southeast Zanjan, Iran. Arabian Journal of Geosciences 8 (11): 9625- 9633.
  • Field C, Fifarek RH (1985). Light stable-isotope systematics in the epithermal environment. Reviews in Economic Geology 2: 99- 128.
  • Fornadel AP, Voudoris PC, Spry PG, Melfos V (2012). Mineralogical, stable isotope and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece. Mineralogy and Petrology 105: 85-111.
  • Guest B, Axen GJ, Lam PS, Hassanzadeh J (2006). Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2 (1): 35-52.
  • Gülyuz N, Shipton ZK, Kuşcu I, Lord RA, Kaymakcı N et al. (2018). Repeated reactivation of clogged permeable pathways in epithermal gold deposits: Kestanelik epithermal vein system, NW Turkey. Journal of the Geological Society 175: 509-524.
  • Hanilçi N, Bozkaya G, Banks D, Prokoviev V, Oztas Y (2015). Preliminary microthermometric data from the Kisladag Au deposit, western Turkey: porphyry/porphyry-epithermal transition? In: European Current Research on Fluid Inclusions (ECROFI-XXIII); Leeds, ; UK; June 2015. Extended Abstracts Volume, pp. 75-76.
  • Hedenquist JW, Arribas AJR, Gonzalez-Urien E (2000). Exploration for epithermal gold deposits. Reviews in Economic Geology 13: 245-277.
  • Heinrich CA, Neubauer F (2002). Cu-Au-Pb-Zn-Ag metallogeny of the Alpine-Balkan-Carpathian-Dinaride geodynamic province. Mineralium Deposita 37: 533-540.
  • Henley RW (1984). Hydrolysis reactions in hydrothermal fluids. Reviews in Economic Geology 1: 65-82.
  • Henley RW, Ellis AJ (1983). Geothermal systems ancient and modern: a geochemical review. Earth-Science Reviews 19: 1-50.
  • Hoefs J (2009). Stable Isotope Geochemistry. Berlin, Germany: Springer-Verlag.
  • Imer A, Richards JP, Creaser RA (2013). Age and tectonomagmatic setting of the Eocene Çöpler–Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey. Mineralium Deposita 48: 557-583.
  • Imer A, Richards JP, Muehlenbachs K (2016). Hydrothermal evolution of the Çöpler porphyry-epithermal Au deposit, Erzincan province, central Eastern Turkey. Economic Geology 111: 1619-1658.
  • Jahandideh Kazempour K, Hosseini M, Hakimi Asiabar S (2011). The study of mineralization in the Abbas Abad polymetallic ore deposit (northwestern Qazvin province, Iran). Quarterly Journal of Earth Resources 4 (3): 21-32 (in Persian).
  • Khodaparast S (2002). Survey of controlling factors in mineralization at Zehabad polymetallic deposit (north of Abhar). MSc, Islamic Azad University, North Tehran Branch, Iran (in Persian with English abstract).
  • Kouhestani H, Ghaderi M, Chang Z, Zaw K (2015). Constraints on the ore fluids in the Chah Zard breccia-hosted epithermal Au– Ag deposit, Iran: fluid inclusions and stable isotope studies. Ore Geology Reviews 65: 512-521.
  • Kouhestani H, Ghaderi M, Zaw K, Meffre S, Emami MH (2012). Geological setting and timing of the Chah Zard breccia hosted epithermal gold-silver deposit in the Tethyan belt of Iran. Mineralium Deposita 47: 425-440.
  • Kouhestani H, Mokhtari MAA (2017). Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. Neues Jahrbuch für Mineralogie – Abhandlungen (Journal of Mineralogy and Geochemistry) 194 (2): 139-155.
  • Kouhestani H, Mokhtari MAA, Chang Z, Johnson CA (2018). Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews 93: 1-18.
  • Leach T, Corbett G (2008). Fluid mixing as a mechanism for bonanza grade epithermal gold formation. In: Terry Leach Symposium; Sydney, Australia.
  • Madanipour S (2013). Spatial and temporal pattern of exhumation in the Talesh Mountain, NW Iran. PhD, Tarbiat Modares University, Tehran, Iran (in Persian with English abstract).
  • Malekzadeh-Shafaroudi A, Karimpour MH (2015). Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (–copper) deposit, eastern Iran. Journal of African Earth Sciences 107: 1-14.
  • McKibben MS, Eldridge CS (1990). Radical sulfur isotope zonation of pyrite accompanying boiling and epithermal gold deposition: a SHRIMP study of the Valles Caldera, New Mexico. Economic Geology 85: 1917-1925.
  • Mehrabi B, Ghasemi Siani M, Goldfarb R, Azizi H, Ganerod M et al. (2016). Mineral assemblages, fluid evolution, and genesis of polymetallic epithermal veins, Glojeh district, NW Iran. Ore Geology Reviews 78: 41-57.
  • Mohammadi-Niaei R, Daliran F, Nezafati N, Ghorbani M, SheikhZakariaei J et al. (2015). The Ay Qalasi deposit: an epithermal Pb–Zn (Ag) mineralization in the Urumieh–Dokhtar volcanic belt of northwestern Iran. Neues Jahrbuch für Mineralogie – Abhandlungen (Journal of Mineralogy and Geochemistry) 192 (3): 263-274.
  • Moradi M (2011). Genesis of Cu and Pb mineralization at Abbas Abad, Tarom Sofla, Qazvin. MSc, Sistan and Baluchestan University, Zahedan, Iran (in Persian with English abstract).
  • Moradi M, Boomeri M, Maanijou M, Hosseini M (2010). Geology and mineralogy in Abbas Abad Pb-Cu-Zn deposit, NW Iran. In: The First Congress of the Iranian Society of Economic Geology.
  • Nabatian G, Ghaderi M, Neubauer F, Honarmand M, Xiaoming L et al. (2014). Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: geochemical, U-Pb zircon and Sr-Nd–Pb isotopic constraints. Lithos 184-187: 324-345.
  • Nabatian G, Jiang SY, Honarmand M, Neubauer F (2016). Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos 244: 43-58.
  • Nabavi MH (1976). Introduction to Geology of Iran. Tehran, Iran: Geological Survey of Iran.
  • Ohmoto H (1972). Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology 67: 551-579.
  • Ohmoto H, Rye RO (1979). Isotopes of sulfur and carbon. In: Barnes HL (editor). Geochemistry of Hydrothermal Ore Deposits. New York, NY, USA: John Wiley and Sons, pp. 509-567.
  • Poliquin M (2004). Low-Sulfidation Epithermal Quartz-Adularia Gold-Silver Veins & the El Fuego Project, Mexico. Vancouver, Canada: Almaden Minerals Ltd.
  • Rajabpour S, Behzadi M, Jiang SY, Rasa I, Lehmann B et al. (2017). Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit, Saveh county, northwestern central Iran. Ore Geology Reviews 86: 563-583.
  • Reyes AG (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research 43: 279-309.
  • Richards JP (2009). Post-subduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37 (3): 247-250.
  • Rye RO (1993). Evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Economic Geology 88: 733-753.
  • Seal RR, Rye RO (1992). Stable isotope of water-rock interaction and ore formation, Bayhorse base and precious metal district, Idaho, USA. Economic Geology 87: 271-287.
  • Shahbazi S, Ghaderi M (2014). Zehabad gold mineralization, an example of epithermal deposits related to high-potassium magmatism in post-subduction extension environment. In: 18th Symposium of the Geological Society of Iran (in Persian).
  • Shahbazi S, Ghaderi M, Madanipour S (2018). The role of ZanjanManjil semi-brittle zone in controlling the Zehabad Pb, Zn, Au, Ag (Cu) mineralization, NW Qazvin. In: 36th National and the 3rd National Geosciences Congress (in Persian with English abstract).
  • Sherlock RL, Tosdal RM, Lehman NJ, Graney JR, Losh S et al. (1995). Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion and isotopic evidence. Economic Geology 90: 2156-2181.
  • Sillitoe RH (2010). Porphyry copper systems. Economic Geology 105: 3-41.
  • Sillitoe RH, Hedenquist JW (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Economic Geology Special Publications 10: 315-343.
  • Sillitoe RH, Tolma J, Van Kerkvoort G (2013). Geology of the Caspiche porphyry gold-copper deposit, Maricunga belt, northern Chile. Economic Geology 108: 585-604.
  • Simmons SF, Browne PRL (2000). Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Economic Geology 95: 971-999.
  • Simmons SF, Christenson BW (1994). Origins of calcite in a boiling geothermal system. American Journal of Science 294: 361-400.
  • Stocklin J, Eftekharnezhad J (1969). Explanatory text of the Zanjan Quadrangle Map. Tehran, Iran: Geological Survey of Iran.
  • Thompson AJB, Thompson JFH (1998). Atlas of Alteration: A Field Guide to Hydrothermal Alteration Minerals. Vancouver, Canada: Alpine Press Ltd.
  • Verdel C, Wernicke BP, Hassanzadeh J, Gues B (2011). A Paleogene extensional arc flare‐up in Iran. Tectonics 30: 1-20.
  • Vincent SJ, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA et al. (2005). Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Bulletin of the Geological Society of America 117: 1513-1533.
  • Wang L, Qin KZ, Song GX, Li GM (2019). A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews 107: 434-456.
  • Yasami N, Ghaderi M, Alfonso P (2018). Sulfur isotope geochemistry of the Chodarchay Cu-Au deposit, Tarom, NW Iran. Neues Jahrbuch für Mineralogie – Abhandlungen (Journal of Mineralogy and Geochemistry) 195 (2): 1-13.
  • Yasami N, Ghaderi M, Madanipour S, Taghilou B (2017). Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran. Ore Geology Reviews 86: 212-224.
  • Yilmaz H, Oyman T, Arehart GB, Colakoglu AR, Billor Z (2007). Low-sulfidation type Au-Ag mineralization at Bergama, Izmir, Turkey. Ore Geology Reviews 32: 81-124.
  • Yilmaz H, Oyman T, Sonmez FN, Arehart GB, Billor Z (2010). Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/western Turkey). Ore Geology Reviews 37: 236-258.
  • Zanchi A, Berra F, Mattei M, Ghassemi M, Sabouri J (2006). Inversion tectonics in Central Alborz, Iran. Geology 28: 2023-2037.