Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting

Öz   In this article, the petrological processes of the clinopyroxenite dykes and host peridotites occurring in Ulaş District (Sivas, mid-Anatolia, Turkey) are discussed. The new geochemical data from major minerals in the clinopyroxenite dykes and host harzburgites revealed differences to the supra-subduction zone (SSZ)-type pyroxenites and peridotites. In particular, the NiO content of olivines in the host harzburgites showed the signature of the mantle, whereas rare olivines of the clinopyroxenites had a NiO content and Fo number that were inferior to those of mantle peridotites. The high Mg-number of clinopyroxenes in the clinopyroxenites was likely associated with the partial remelting of the host harzburgites. Additionally, the rare earth element pattern of clinopyroxenes from the studied clinopyroxenites exhibited a similar pattern to those of the other SSZ or fore-arc clinopyroxenes. Additionally, the low Mgnumber and relatively high Cr-number of spinels in the clinopyroxenites showed similarity to the subduction-related origin. Based on textural and geochemical evidence, the harzburgites were interpreted as depleted mantle rock, which was modified by melt-peridotite interactions. Consequently, the pyroxenites likely occurred as a crystallizing or cumulative zone of the SSZ-type melt and the minerals were gained from partial melting of the harzburgites through the interaction with such magma.

Kaynakça

Allegre CJ, Turcotte DL (1986). Implications of a two-component marble-cake mantle. Nature 323: 123-127.

Arai S (1992). Chemistry of chromian spinel in volcanic-rocks as a potential guide to magma chemistry. Min Magazine 56: 173- 184.

Arai S (1994). Characterization of spinel peridotites by olivine-spinel mantle com-positional relationships: review and interpretation. Chem Geol 113: 191-204.

Arai S, Takemoto Y (2007). Mantle wehrlite from Hess Deep as a crystal cumulate from an ultra-depleted primary melt in East Pacific Rise. Geophys Res Lett 34: L08302.

Batanova V, Belousov I, Savelieva G, Sobolev A (2011). Consequences of channelized and diffuse melt transport in supra-subduction mantle: evidence from Voykar ophiolite (Polar Urals). J Petrol 52: 2483-2521.

Berly TJ, Hermann J, Arculus AJ, Lapierr H (2006). Supra-subduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands). J Petrol 47: 1531-1555.

Bilici Ö (2015). Comparative investigation of Kop (Erzurum- Erzincan-Bayburt), Ulaş (Sivas) and Yeşilova (Burdur) ultramafics and chromitites in terms of mineralogical, petrological and geodynamical aspects. PhD, Karadeniz Technical University, Trabzon, Turkey (in Turkish with English Abstract).

Bizimis M, Salters VJM, Bonatti E (2000). Trace and REE contents of clinopyroxenes from supra-subduction zone peridotites, implication for melting and enrichment processes in island arcs. Chem Geol 165: 67-85.

Bodinier JL, Godard M (2003). Orogenic, ophiolitic, and abyssal peridotites. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry. Oxford, UK: Elsevier, pp. 103-170.

Bodinier JL, Menzies MA, Shimizu N, Frey A, McPherson E (2004). Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt- harzburgite reaction. J Petrol 4: 299-320.

Bonatti E, Michael PJ (1989). Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91: 297-311.

Brooker RA, James RH, Blundy JD (2004). Trace element and Li isotope systematics in Zabargad peridotites: evidence of an ancient subduction process in the Red Sea mantle. Chem Geol 212: 179-204.

Buchl A, Brugmann G, Batanova VG, Munker C, Hofmann AW (2002). Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet Sci Lett 204: 385-402.

Cannat M, Bideau D, Hébert R (1990). Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth Planet Sci Lett 101: 216-232.

Cater JML, Hanna SS, Ries AC, Turner P (1991). Tertiary evolution of the Sivas Basin, Central Turkey. Tectonophysics 195: 29-46.

Choi SH, Shervais JW, Mukasa SB (2008). Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Cont Min Petrol 156: 551-576.

Constantin M, Hekinian R, Ackerman D, Staffers P (1995). Mafic and ultramafic intrusions into upper mantle peridotites from fast spreading centers of the Easter Microplate (South East Pacific). In: Vissers R, Nicolas A, editors. Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites. Petrology and Structural Geology. Dordrecht, Netherlands: Kluwer, pp. 71-120.

Dantas C, Ceuleneer G, Gregoire M, Python M, Freydier R, Warren J, Dick HJB (2007). Pyroxenites from the Southwest Indian Ridge, 9-168E: Cumulates from incremental melt fractions produced at the top of a cold melting regime. J Petrol 48: 647- 660.

Dare SAS, Pearce JA, McDonald I, Styles MT (2009). Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–FeIII systematics in chrome–spinel. Chem Geol 261: 199-216.

DeBari SM, Coleman RJ (1989). Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic–mafic assemblage. J Geophys Res 94: 4373-4391.

DeBari SM, Kay SM, Kay RW (1987). Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc. J Geol 95: 329-341.

Dick HJB (1989). Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. J Geol Soc London Spec Public 42: 71-105.

Dick HJB, Bullen T (1984). Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Cont Min Petrol 86: 54-76.

Dick HJB, Sinton JM (1979). Compositional layering in Alpine peridotites: evidence for pressure solution creep in the mantle. J Geol 87: 403-416.

Downes H (2007). Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99: 1-24.

Edwards SJ, Malpas J (1995). Multiple origins for mantle harzburgites: examples from the Lewis Hills, Bay of Islands ophiolite, Newfoundland. Canad J Earth Sci 32: 1046-1057.

France L, Chazot G, Kornprobst J, Dallai L, Vannucci R, Grégoire M, Bertrand H, Boivin P (2015). Mantle refertilization and magmatism in old orogenic regions: the role of late-orogenic pyroxenites. Lithos, 232: 49-75.

Fujii T (1990). Petrology of peridotites from hole 670A, Leg 109. In: Detrick R, Honnorez J, Brian WB, Juteau T, Becker K, Adamson AC, editors. Proceedings of Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 19-25.

Gaetani GA, Grove TL (1998). The influence of water on melting of mantle peridotite. Cont Min Petrol 131: 323-346.

Garrido CJ, Bodinier JL (1999). Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt–rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40: 729-754.

Girardeau J, Ibarguchi JIG (1991). Pyroxenite-rich peridotites of the Cabo Ortegal Complex (northwestern Spain): evidence for large-scale upper-mantle heterogeneity. J Petrol 2: 135- 153.

Gonzaga RG, Menzies MA, Thirlwall MF, Jacob DE, Leroex A (2010). Eclogites and garnet pyroxenites: problems resolving provenance using Lu–Hf, Sm–Nd and Rb–Sr isotope systems. J Petrol 51: 513-535.

Gonzalez-Jimenez JM, Proenza JA, Gervilla F, Melgarejo JC, Blanco- Moreno JA, Ruız-Sanchez R, Griffin WL (2011). High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum group elements. Lithos 125: 101-121.

Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005). Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and Nano SIMS study. Cont Min Petrol 150: 486-504.

Irving AJ (1974). Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulites xenoliths from the Delegate Basaltic Pipes, Australia. J Petrol 15: 1-40.

Ishii T, Robinson PT, Maekawa H, Fiske R (1992). Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Coleman P, Stokking LB, editors. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 445-486.

Johnson KT, Dick HJ, Shimizu N (1990). Melting in the oceanic upper mantle: an ion-microprobe study of diopsides in abyssal peridotite. J Geophys Res 95: 2661-2678.

Juteau T, Berger E, Cannat M (1990). Serpentinized, residual mantle peridotites from the M.A.R. Median Valley, hole 670A, Leg 109: primary mineralogy and geothermometry. In: Detrick R, Honnorez J, Brian WB, Juteau T, Becker K, Adamson AC, editors. Proceedings of Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 27-45.

Kaczmarek MA, Jonda L, Davies HL (2015). Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex, Papua New Guinea). Cont Min Petrol 170: 19.

Kelemen PB (1990). Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calcalkaline magma series, and the formation of discordant dunite. J Petrol 31: 51-98.

Kelemen PB, Shimizu N, Salters VJM (1995). Extraction of mid- ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375: 747-753.

Kempton PD, Stephens CJ (1997). Petrology and geochemistry of nodular websterite inclusions in harzburgite, hole 920D, Leg 153. In: Karson JA, Cannat M, Miller DJ, Elthon D, editors. Proceedings of Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 321- 331.

Ketin İ (1983). A General Overview on Geology of Turkey. İstanbul, Turkey: ITU Library Publication (in Turkish).

Kornprobst J (1969). High temperature, high pressure alpine- type peridotite and associated pyroxenites (with or without garnet) from Beni Bouchera (Morocco). Cont Min Petrol 23: 283-322 (article in French with an abstract in English).

Laukert G, von der Handt A, Hellebrand E, Snow JE, Hoppe P, Klugel A (2014). High pressure reactive melt stagnation recorded in abyssal pyroxenites from the ultraslow-spreading Lena Trough, Arctic Ocean. J Petrol 55: 427-458.

Lee Y (1999). Geotectonic significance of detrital chromian spinel: a review. Geosci J 3: 23-29.

Loubet M, Allegre CJ (1982). Trace elements in orogenic lherzolites reveal the complex history of the upper mantle. Nature 298: 809-814.

Marchesi C, Garrido CJ, Bosch, D, Bodinier JL, Gervilla F, Hidas K (2013). Mantle refertilization by melts of crustal-derived garnet pyroxenite: evidence from the Ronda peridotite massif, southern Spain. Earth Planet Sci Lett 362: 66-75. Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1 997). Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38: 1419-1458.

Menzies M, Allen C (1974). Plagioclase lherzolite-residual mantle relationships within two eastern Mediterranean ophiolites. Cont Min Petrol 45: 197-213.

Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi D (1988). Nomenclature of pyroxenes. Am Mineral 62: 53-62.

MTA (2002). 1:500,000 Scale Geology Map of Turkey. General Directorate of Mineral Research and Exploration, Ankara, Turkey.

Nozaka T (2005). Metamorphic history of serpentinite mylonites from the Happoultramafic complex, central Japan. J Metamorphic Geol 23: 711-723.

Okay IA, Tüysüz O (1999). Tethyan sutures of northern Turkey. J Geol Soc London Spec Public 156: 475-515.

Page P, Barnes SJ (2009). Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Québec, Canada. Eco Geol 104: 997-1018.

Page P, Bedard JH, Schroetter JM, Tremblay A (2008). Mantle petrology and mineralogy of the Thetford Mines Ophiolite Complex. Lithos 100: 255-292.

Parkinson IJ, Pearce JA (1998). Peridotites from the Izu-Bonin- Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39: 1577-1618.

Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992). Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Coleman P, Stokking LB, editors. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 487-506.

Parlak O (2016). The Tauride ophiolites of Anatolia (Turkey): a review. J Earth Sci 27: 901-934.

Parlak O, Yılmaz H, Boztuğ D (2006). Origin and tectonic significance of the metamorphic sole and isolated dykes of the Divriği Ophiolite (Sivas, Turkey): evidence for slab break- off prior to ophiolite emplacement. Turkish J Earth Sci 15: 25-45.

Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Cont Min Petrol 139: 36-53.

Pearson DG, Davies GR, Nixon PH (1993). Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif. J Petrol 34: 125-172.

Pearson DG, Nowell GM (2004). Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif; implications for mixed peridotite-pyroxenite mantle sources. J Petrol 45: 439-455.

Poisson A, Guezou JC, Öztürk A, İnan S, Temiz H, Gürsöy H, Kavak KS, Özden S (1996). Tectonic setting and evolution of the Sivas Basin, Central Anatolia, Turkey. Int Geol Rev 38: 838-853.

Robertson AHF, Parlak O, Metin Y, Vergili Ö, Tasli K, İnan N, Soycan H (2013). Late Palaeozoic–Cenozoic Tectonic Development of Carbonate Platform, Margin and Oceanic Units in the Eastern Taurides, Turkey. In: Robertson AHF, Parlak O, Unlugenc UC, editors. Geological Development of Anatolia and the Easternmost Mediterranean Region. London, UK: The Geological Society, pp. 167-218.

Rollinson P (2008). The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Cont Min Petrol 156: 273-288.

Santos JF, Scharer U, Ibarguchi JIG, Girardeau J (2002). Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb–Sr–Nd isotope data. J Petrol 43: 17-43.

Seyler M, Bonatti E (1997). Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean). Earth Plan Sci Lett 146: 273-287.

Seyler M, Brunelli D, Toplis MJ, Mevel C (2011). Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E–68°1422 E): Trace element compositions of alon gaxis dredged peridotites. Geochem Geophys Geosys 12: Q0AC15.

Seyler M, Cannat M, Mevel C (2003). Evidence for major element heterogeneityin the mantle source of abyssal peridotites from the Southwest Indian Ridge (52 to 68°E). Geochem, Geophys Geosys 4: 1-33.

Seyler M, Lorand JP, Dick HJB, Drouin M (2007). Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid Atlantic Ridge,15°20N: ODP Hole 1274A. Cont Min Petrol 153: 303-319.

Snoke AW, Quick JE, Bowman HR (1981). Bear Mountain igneous complex, Klamath Mountains, California: an ultrabasic to silicic calc-alkaline suite. J Petrol 22: 501-552.

Spandler CJ, Arculus RJ, Eggins SM, Mavrogenes JA, Price RC, Reay A (2003). Petrogenesis of the Greenhills Complex, Southland, New Zealand: magmatic differentiation and cumulate formation at the roots of a Permian island-arc volcano. Cont Min Petrol 14: 703- 721.

Sun SS, McDonough WF (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ, editors. Magmatism in the Ocean Basins. London, UK: The Geological Society, pp. 313-345.

Takahashi E, Uto K, Schilling JG (1987). Primary magma compositions and Mg/Fe ratios mantle resudies Along Mid Atlantic Ridge 29°N to 73°N. Technical reports of ISEI, Okayama University, Ser A 9: 1-14.

Tamura A, Arai S (2006). Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90: 43-56.

Uysal I, Ersoy EY, Karslı O, Dilek Y, Sadıklar MB, Ottely CJ, Tiepolo M, Meisel T (2012). Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 132-133: 50-69.

Uysal I, Tarkian M, Sadıklar MB, Şen C (2007). Platinum-Group- Element geochemistry and mineralogy of ophiolitic chromitites from the Kop Mountains, northeastern Turkey. Canad Mineral 45: 355-377.

Van Acken D (2008). Melt-rock interaction and refertilization of oceanic lithosphere - a highly siderophile element and Os isotope study, Totalp Massif, Switzerland. PhD, Freie Universty, Berlin, Germany.

Van Acken D, Becker H, Walker RJ, McDonough WF, Wombacher F, Ash RD, Piccoli PM (2010). Formation of pyroxenites layers in the Totalp ultramafic massif (Swiss Alps) – Insights from highly siderophile elements and Os isotopes. Geo Cosmo Acta 74: 661-683.

Varfalvy V, Hebert R, Bedard JH (1996). Interactions between melt and upper-mantle peridotites in the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada: implications for the genesis of boninitic and related magmas. Chem Geol 129: 71-90.

Varfalvy V, Hebert R, Bedard JH, Lafleche M (1997). Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland: implications for the genesis of boninitic and related magmas. Canad Mineral 35: 543-570.

Vergili Ö, Parlak O (2005). Geochemistry and tectonic setting of metamorphic sole rocks and mafic dykes from the Pınarbaşı (Kayseri) Ophiolite, Central Anatolia. Ofioliti 30: 37-52.

Wang Z, Sun S, Hou Q, Li J (2001). Effect of melt–rock interaction on geochemistry in the Kudi ophiolite (western Kunlun Mountains, northwestern China): implication for ophiolite origin. Earth Planet Sci Let 191: 33-48.

Warren JM, Shimizu N, Sakaguchi C, Dick HJB, Nakamura E (2009). An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res 114: B12203.

Whattam SA, Moonsup Cho M, Smith IEM (2011). Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos 127: 599-618.

Wojtulek P, Puziewicz J, Ntaflos T (2016). Melt impregnation phases in the mantle section of the Sleza ophiolite (SW Poland). Chemie der Erde 76: 299-308.

Yaxley GM, Green DH (1998). Reactions between eclogite and peridotite: mantle refertilization by subduction of oceanic crust. Schweiz Min Petr Mitt 78: 243-255.

Yilmaz A, Sümengen M, Terlemez I, Bilgiç T (1989). 1:100000 Scale Geology Map of Turkey, Sivas G23. General Directorate of Mineral Research and Exploration, Ankara, Turkey.

Yılmaz A, Yılmaz H (2006). Characteristic features and structural evolution of a post collisional basin: the Sivas Basin, Central Anatolia, Turkey. J Asian Earth Sci 27: 164-176.

Yılmaz H, Arıkal T, Yılmaz A (2001). Geology of the Güneş ophiolite (Divriği-Sivas). Proceedings of the 54th Geological Congress of Turkey, Ankara, Turkey, pp. 54-65 (in Turkish with an abstract in English).

Yılmaz H, Yılmaz A (2004). Geology and Structural Evolution of the Divriği (Sivas) Region. Geological Bulletin of Turkey 47: 13-45.

Xiong Q, Zheng JP, Griffin WL, O’Reilly SY, Pearson NJ (2014). Pyroxenite dykes in orogenic peridotite from North Qaidam (NE Tibet, China) track metasomatism and segregation in the mantle wedge. J Petrol 55: 2347-2376.

Zaccarini F, Garuti G, Proenza JA, Campos L, Thalhammer OAR, Aiglsperger T, Lewis J (2011). Chromite and platinum- group-elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica): geodynamic implications. Geol Acta 9: 407-423.

Zhou MF, Robinson PT, Malpas I, Li Z (1996). Podiform chromitites in Luobusa ophiolite (Southern Tibet): implications for melt- rock interaction and chromite segregation in the upper mantle. J Petrol 37: 3-21.

Kaynak Göster

Bibtex @araştırma makalesi { tbtkearth473919, journal = {Turkish Journal of Earth Sciences}, issn = {1300-0985}, eissn = {1303-619X}, address = {}, publisher = {TÜBİTAK}, year = {2018}, volume = {27}, pages = {384 - 404}, doi = {}, title = {Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting}, key = {cite}, author = {Bilici, Özgür and Kolaylı, Hasan} }
APA Bilici, Ö , Kolaylı, H . (2018). Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting . Turkish Journal of Earth Sciences , 27 (5) , 384-404 .
MLA Bilici, Ö , Kolaylı, H . "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting" . Turkish Journal of Earth Sciences 27 (2018 ): 384-404 <
Chicago Bilici, Ö , Kolaylı, H . "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting". Turkish Journal of Earth Sciences 27 (2018 ): 384-404
RIS TY - JOUR T1 - Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting AU - Özgür Bilici , Hasan Kolaylı Y1 - 2018 PY - 2018 N1 - DO - T2 - Turkish Journal of Earth Sciences JF - Journal JO - JOR SP - 384 EP - 404 VL - 27 IS - 5 SN - 1300-0985-1303-619X M3 - UR - Y2 - 2018 ER -
EndNote %0 Turkish Journal of Earth Sciences Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting %A Özgür Bilici , Hasan Kolaylı %T Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting %D 2018 %J Turkish Journal of Earth Sciences %P 1300-0985-1303-619X %V 27 %N 5 %R %U
ISNAD Bilici, Özgür , Kolaylı, Hasan . "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting". Turkish Journal of Earth Sciences 27 / 5 (Eylül 2018): 384-404 .
AMA Bilici Ö , Kolaylı H . Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting. Turkish Journal of Earth Sciences. 2018; 27(5): 384-404.
Vancouver Bilici Ö , Kolaylı H . Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting. Turkish Journal of Earth Sciences. 2018; 27(5): 384-404.
IEEE Ö. Bilici ve H. Kolaylı , "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting", Turkish Journal of Earth Sciences, c. 27, sayı. 5, ss. 384-404, Eyl. 2018