Cathodoluminescence, fluid inclusions, and trace element data for the syntaxial quartz cementation in the sandstones of the Ora Formation, northern Iraq

Quartz cements of the quartz arenitic sandstones from the Chalky Nasara and Ora sections of the (Devonian-Carboniferous) Ora Formation in northern Iraq have been studied. A combination of hot cathodoluminescence, LA-ICP-MS, and fluid inclusion microthermometry revealed three syntaxial quartz cement generations (Q1, Q2, and Q3). The early Q1 cementation has gray to slightly brown luminescences, postdated compaction, and reduced intergranular porosity associated with illite formed during eogenesis. Q2 is characterized by dark brown luminescence overgrowths and is more voluminous in the thinly bedded sandstones than in the thickly bedded sandstones filling most of the remaining pore space during mesogenesis. Q3 was formed during the early telogenesis stage fully cementing the sandstones and the fractures were filled by hydrothermal chlorite and sulfides. Significant amounts of trace elements Al, Li, Ge, and Fe have been detected in quartz overgrowths. Al varies consistently between each cement with averages of 7125, 4044, and 2036 ppm for the Q1, Q2, and Q3 generations, respectively. A strong linear correlation between Al and Li in the three quartz cements with an average Li/Al of ~0.02 in Q1 and Q2 indicates sufficient availability of both Al and Li where Li is most likely to be found in high-saline pore waters. Illite is the most probable origin of Li since high salinities favor the mobilization of Li during diagenesis. Germanium concentrations in quartz cements are slightly less than that in the detrital quartz of the Ora Formation, indicating that the pressure dissolutions of quartz and feldspar are the dominant sources of cementation in the Ora Formation. Homogenization temperatures of fluid inclusions indicate precipitation of the Q1, Q2, and Q3 cement generations at temperature ranges of 155-160 °C, 160-166 °C, and 168-178 °C, respectively, with salinities ranging between 5.0 and 6.4 wt.% NaCl equiv., as an indication of hydrothermal burial conditions for Q3 cement, which was affected by the major Zagros Thrust Zone faulting.

___

  • Alavi M (1994). Tectonics of the Zagros Orogenic Belt of Iran: new data and interpretations. Tectonophysics 229: 211-238.
  • Alavi M (2004). Regional stratigraphy of the Zagros fold-thrust belt in Iran and its proforeland evolution. Am J Sci 304: 1-20.
  • Alavi M (2007). Structures of the Zagros Fold-Thrust Belt in Iran. Am J Sci 307: 1064-1095.
  • Al-Hadidy AH (2007). Paleozoic stratigraphic lexicon and hydrocarbon habitat of Iraq. Geo-Arabia 12: 63-130.
  • Ali SA, Omer M.F, Aqrawi AM (2016). Petrography geochemistry and provenance of the Chalki rocks in Kurdistan region, North Iraq. Arab J Geosci 9: 1-15.
  • Angevine CL, Turcotte DL (1983). Porosity reduction by pressure solution: a theoretical model for quartz arenites. Geol Soc Am Bull 94: 1129-1134.
  • Aqrawi AAM, Goff JC, Horbury AD, Sadooni FN (2010). The Petroleum Geology of Iraq. Beaconsfield, UK: Scientific Press Ltd.
  • Bambauer HU (1961). Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerrklüften der Sweizer Alpen. Schweiz Miner Petrog 41: 335-369 (in German).
  • Barzinjy DN (2006). Sedimentology and palynology of Kaista and Ora formations in Zakho area Iraqi Kurdistan Region. MSc, Salahaddin University, Erbil, Iraq.
  • Basu A (1985). Reading provenance from detrital quartz. In: Zuffa GG, editor. Provenance of Arenites. NATO ASI Series, C 148. Dordrecht, the Netherlands: D. Reidel Publishing Company, pp. 231-247.
  • Behnam WM (2013). The sedimentology of Ora Formation (Upper Devonian-Lower Carboniferous) in north and west of Iraq. PhD, University of Baghdad, Baghdad, Iraq.
  • Bellen RC, Dunnington HV, Wetzel R, Morton DM (1959). Lexique Stratigraphique Internal Asia, Fascicule, 10a, Iraq. Paris, France: Central National deal Recherches Scientifique (in French).
  • Bjørlykke K, Ramm M, Saigal GC (1989). Sandstone diagenesis and porosity modification during basin evolution. Geol Rundsch 78: 243-268.
  • Bjørlykke K, Aagard P (1992). Clay minerals in North Sea sandstones. Origin, diagenesis and petrophysics of clay minerals in sandstones. SEPM Spec P 47: 65-80.
  • Buday T (1980). The Regional Geology of Iraq, Stratigraphy and Paleontology. Mosul, Iraq: Dar Al-Kutb Publishing House, University of Mosul.
  • Chan LH, Starinski A, Katz A (2002). The behavior of lithium and its isotopes in oil field brines: evidence from the Heletz-Kokhov field, Israel. Geochim Cosmochim Ac 66: 615-623.
  • Davoudzadeh M, Weber-Diefenbach K (1987). Contribution to the paleogeography, stratigraphy and tectonics of the Upper Paleozoic of Iran. Neues Jahrb Geol P-A 175: 121-146.
  • Demars C, Pagel M, Deloule E, Blanc P (1996). Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of trace element distributions and fluid inclusion P-T-X properties in authigenic quartz. Am Mineral 81: 891-901.
  • Dickinson WW, Milliken KL (1995). The diagenetic role of brittle deformation in compaction and pressure solution, Etjo sandstone, Namibia. Geology 103: 339-347.
  • Dutton SP, Diggs TN (1990). History of quartz cementation in the Lower Cretaceous Travis Peak Formation, East Texas. J Sediment Petrol 60: 191-202.
  • Evans MJ, Derry LA (2002). Quartz control of high germanium/ silicon ratios in geothermal waters. Geology 30: 1019-1022.
  • Folk RL, Andrews PB, Lewis DW (1970). Detrital sedimentary rock classification for use in New Zealand. J Geol Geophys 13: 937- 968.
  • Friis H, Sylvestersen RL, Nebel LN, Poulsen MK, Svendsen JB (2010). Hydrothermally influenced cementation of sandstone- An example from deeply buried Cambrian sandstones from Bornholm, Denmark. Sediment Geol 227: 11-19.
  • Götte T, Pettke T, Ramseyer K, Koch-Müller M, Mullis L (2011). Cathodoluminescence properties and trace element signature of hydrothermal quartz: a fingerprint of growth dynamics. Am Mineral 96: 802-813.
  • Götte T, Ramseyer K (2012). Trace element characteristics luminescence properties and real structure of quartz. In: Götze J, Möckel R, editors. Quartz: Deposits, Mineralogy and Analytics. Berlin, Germany: Springer, pp. 265-285.
  • Götte T, Ramseyer K, Pettke T, Müller MK (2013). Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones. Sedimentology 60: 1111-1127.
  • Haddad SC, Worden RH, Prior DJ, Smalley PC (2006). Quartz cement in the Fontainebleau Sandstone, Paris Basin, France: crystallography and implications for mechanisms of cement growth. J Sediment Res 76: 244-256.
  • Hartmann BH, Juhász-Bodnár K, Ramseyer K, Matter A (2000a). Polyphased quartz cementation and its sources: a case study from the Upper Paleozoic Haushi Group sandstones, Sultanate of Oman. In: Worden, RH, Morad S, editors. Quartz Cementation in Sandstones. Oxford, UK: International Association of Sedimentologists Special Publication, pp. 253-270.
  • Hartmann BH, Ramseyer K, Matter A (2000b). Diagenesis and pore- water evolution in Permian sandstones, Gharif Formation, Sultanate of Oman. J Sediment Res 70: 533-544.
  • Hessami K, Koyi HA, Talbot CJ (2001). The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt. J Petrol Geol 24: 5-28.
  • Hiatt EE, Kyser TK, Fayek M, Polito P, Holk GJ, Riciputi LR (2007). Early quartz cements and evolution of paleohydraulic properties of basal sandstones in three Paleoproterozoic continental basins: evidence from in situ γ 18 O analysis of quartz cements. Chem Geol 238: 19-37.
  • Hörmann PK (1970). Germanium. In: Wedepohl KH, Correns CW, Shaw DM, Turekian KK, Zemann J, editors. Handbook of Geochemistry. Berlin, Germany: Springer.
  • Ingersoll RV, Suczek CA (1979). Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. J Sediment Petrol 49: 1217-1228.
  • Jassim SZ, Goff JC (2006). Geology of Iraq. Prague, Czech Republic: Dolin.
  • Jourdan AL, Vennemann TW, Mullis J, Ramseyer K, Spiers CJ (2009). Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. Euro J Min 21: 219-231.
  • Kelly JL, Fu B, Kita NT, Valley JW (2007). Optically continuous silcrete quartz cements of the St. Peter Sandstone: high precision oxygen isotope analysis by ion microprobe. Geochim Cosmochim Ac 71: 3812-3832.
  • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001). Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin), evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim Cosmochim Ac 65: 4087-4101.
  • Kraishan GM, Rezaee MR, Worden RH (2000). Significance of trace element composition of quartz cement as a key to reveal the origin of silica in sandstones: an example from the Cretaceous of the Barrow Sub-basin, Western Australia. In: Worden RH, Morad S, editors. Quartz Cementation in Sandstones. Oxford, UK: International Association of Sedimentologists Special Publication, pp. 317-331.
  • Lehmann K, Pettke T, Ramseyer K (2011). Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chem Geol 280: 47-57.
  • Makowitz A, Milliken KL (2003). Quantification of brittle deformation in burial compaction, Frio and Mount Simon Formation sandstones. J Sediment Res 73: 1007-1021.
  • Marchand AME, Smalley CP, Haszeldine SR, Fallick AE (2002). Note on the importance of hydrocarbon fill for reservoir quality prediction in sandstones. AAPG Bull 86: 1561-1572.
  • Marino E, Harvey C, Murray HA (1989). Aqueous chemical control of the tetrahedral-aluminum content of quartz, halloysite, and other low-temperature silicates. Clay Clay Miner 37: 135-142.
  • Matter A, Ramseyer K (1985). Cathodoluminescence microscopy as a tool for provenance studies sandstones. In: Zuffa GG, editor. Provenance of Arenites. NATO Advanced Study Institute Series 148. Dordrecht, the Netherlands: V.C.D. Reidel, pp. 191-211.
  • McGillivray JG, Husseini MI (1992). The Paleozoic petroleum geology of central Arabia. AAPG Bull 76: 1473-1490.
  • Merino E, Wang Y, Deloule E (1995). Genesis of agates in flood basalts: twisting of chalcedony fibers and trace element geochemistry. Am J Sci 295: 1156-1176.
  • Milliken KL, Laubach SE (2000). Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In: Pagel M, editor. Cathodoluminescence in Geosciences. Berlin: Germany, Springer, pp. 225-243.
  • Molenaar N, Cyziene J, Sliaupa S (2007). Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones. Sediment Geol 195: 135-159.
  • Molenaar N, Cyziene J, Sliaupa S, Craven J (2008). Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin. Geol Soc Am Bull 120: 1280-1295.
  • Monecke T, Kempe J, Götze J (2002). Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth Planet Sci Lett 202: 709-724.
  • Morad S, Ketzer JM, De Ros LF (2000). Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47: 95-120.
  • Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin DJ, Stenina NG, Kronz A (2010). Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner Deposita 45: 707-727.
  • Müller A, Wiedenbeck M, Van den Kerkhoff AM, Kronz A, Simon K (2003). Trace elements in quartz - a combined electron microprobe, secondary ion mass spectrometry, laser ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15: 747-763.
  • Neuser RD, Bruhn F, Gtöze J, Habermann D, Richter DK (1996). Kathodolumineszenz: Methodik und Anwendung: Zentralblatt fur Geologie und Palaontologie, Teil I, H. 1/2. Stuttgart, Germany: Schweizerbart and Borntraeger (in German).
  • Omer MF (2012). The sedimentology and geochemistry of the Khabour Formation Northern Iraq. PhD, University of Baghdad, Baghdad, Iraq.
  • Omer MF (2015). Cathodoluminescence petrography for provenance studies of the sandstones of Ora Formation (Devonian- Carboniferous), Iraqi Kurdistan Region, northern Iraq. J Afr Earth Sci 109: 195-210.
  • Omer MF, Friis H (2014). Cathodoluminescence investigations on quartz cement in the sandstones of Khabour Formation from Iraqi Kurdistan Region, Northern Iraq. J Afr Earth Sci 91: 44-54.
  • Postma D (1982). Pyrite and siderite formation in brackish and freshwater swamp sediments. Am J Sci 282: 1151-1183.
  • Rezaee M, Tingate PR (1997). Origin of quartz cement in Tirrawarra Sandstone, Southern Cooper Basin, South Australia. J Sediment Res 67: 168-177.
  • Richter DK, Götte T, Götze J, Neuser RD (2003). Progress and application of cathodoluminescence in sedimentary petrology. Mineral Petrol 79: 127-166.
  • Roedder E (1984). Fluid Inclusions. Reviews in Mineralogy, Vol. 12. Chantilly, VA, USA; Mineralogical Society of America.
  • Rusk BG, Lowers HA, Reed MH (2008). Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36: 547-550.
  • Scholle PA (1979). A Color Illustrated Guide to Constituents, Textures, Cements, and Porosities of Sandstones and Associated Rocks. Tulsa, OK, USA: AAPG Memoirs.
  • Sharland PR, Archer R, Casey DM, Hall SH, Heward AP, Horbury AD, Simmons MD (2001). Arabian Plate Sequence Stratigraphy. Geo Arabia, Special Publications 2. Manama, Bahrain: Gulf Petrolink. Sibley DF, Blatt H (1976). Intergranular pressure solution and cementation of the Tuscarora orthoquartzite. J Sediment Petrol 46: 881-896.
  • Sissakian V (2000). Geological Map of Iraq, Scale 1:1,000,000. 3rd ed. Baghdad, Iraq: GEOSURV.
  • Stocklin J (1968). Structural history and tectonics of Iran: a review. AAPG Bull 52: 1229-1258.
  • Stocklin J (1974). Possible ancient continental margins in Iran. In: Burk CA, Drake CL, editors. The Geology of Continental Margins. Berlin, Germany: Springer-Verlag, pp. 873-887.
  • Tada R, Sieve R (1989). Pressure solution during diagenesis. Ann Rev Earth Pl Sc 17: 89-118.
  • Takin M (1972). Iranian geology and continental drift in the Middle East. Nature 235: 147-150.
  • Talebian M, Jackson J (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros Mountains of Iran. Geophys J Int 156: 506-526.
  • Tamar-Agha MY (2009). The influence of cementation on the reservoir quality of the Risha Sandstone Member (Upper Ordovician), Risha Gasfield, NE Jordan. J Petrol Geol 32: 193-208.
  • Taylor TR, Giles MR, Hathon LA, Diggs TN, Braunsdorf NR, Birbiglia GV, Kittridge MG, Macaulay CI, Espejo IS (2010). Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull 98: 1093-1132.
  • Tortosa A, Palomares M, Arribas J (1991). Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In: Morton AC, Todd SP, Haughton PDW, editors. Developments in Sedimentary Provenance Studies. London, UK: Geological Society of London Special Publications, pp. 47-54.
  • Van den Kerhof AM, Scherer T, Riganti A (1996). Cathodoluminescence and EPR analysis of Archean quarzites from the Nondweni Greenstone Belt, South Africa. In: Abstracts of the SLMS International Conference on Cathodoluminescence, p. 75.
  • Walderhaug O (1994). Precipitation rates for quartz cement in sandstones determined by fluid-inclusions microthermometry and temperature history modeling. J Sediment Res 64: 324-333.
  • Weber J (2000). Kieselsäurediagenese und gekoppelte Sedimentarchitektur - eine Beckenanalyse des Reinhardswald-Troges (Norddeutsches Becken, Solling-Folge, Mittlerer Buntsandstein). PhD, University of Cologne, Cologne, Germany (in German).
  • Weber J, Ricken W (2005). Quartz cementation and related sedimentary architecture of the Triassic Solling Formation, Reinhardswald Basin, Germany. Sediment Geol 175: 459-477.
  • Weibel R, Friis H, Kazerouni AM, Svendsen JB, Stokkendal J, Poulsen MLK (2010). Development of early diagenetic silica and quartz morphologies-Examples from the Siri Canyon, Danish North Sea. Sediment Geol 228: 151-170.
  • Williams LB, Hervig RL (2005). Lithium and boron isotopes in illite- smectite: the importance of crystal size. Geochim Cosmochim Ac 69: 5705–57.
  • Worden RH, Morad S (2000). Quartz cementation in oil field sandstones: a review of the key controversies. In: Worden RH, Morad S, editors. Quartz Cementation in Sandstones. Oxford, UK: International Association of Sedimentologists Special Publication, pp. 1-20.
  • Zhang J, Qin L, Zhang Z (2008). Depositional facies, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in central Tarim basin, western China. J Asian Earth Sci 33: 42-60.
  • Zinkernagel U (1978). Cathodoluminescence of Quartz and Its Application to Sandstone Petrology. Contributions to Sedimentary Geology, Volume 8. Stuttgart, Germany: Schweizerbart and Borntraeger.