Ultrasound-assisted emulsification--solidified floating organic drop microextraction combined with flow injection--flame atomic absorption spectrometry for the determination of palladium in water samples

The ultrasound-assisted emulsification--solidified floating organic drop microextraction (USAE--SFODME) methodology was combined with flow injection--lame atomic absorption spectrometry (FI--FAAS) for the separation/pre\-concentration and determination of palladium at ultratrace level. In this method, the palladium ion in the aqueous solution was complexed with acetylacetone (6 \times 10-3 mol L-1) in the pH range of 1--7 and was extracted into 40 m L of 1-undecanol, which was sonically dispersed in the aqueous phase. The vial was then centrifuged and cooled in an ice bath for 5 min. The solidified extract was melted and diluted to 100 m L with a solution of hydrochloric (1 mol L-1) acid in ethanol, and the concentration of palladium was determined by FI--FAAS. Under the optimum conditions, an enhancement factor of 55 and a good relative standard deviation of \pm 2.1% at 40 m g L-1 were obtained (n = 7). The proposed method was successfully applied to the determination of palladium in different types of water samples. Accuracy was assessed through recovery experiments, independent analysis by furnace atomic absorption spectrometry, and analysis of a certified reference ore by the proposed method.

Ultrasound-assisted emulsification--solidified floating organic drop microextraction combined with flow injection--flame atomic absorption spectrometry for the determination of palladium in water samples

The ultrasound-assisted emulsification--solidified floating organic drop microextraction (USAE--SFODME) methodology was combined with flow injection--lame atomic absorption spectrometry (FI--FAAS) for the separation/pre\-concentration and determination of palladium at ultratrace level. In this method, the palladium ion in the aqueous solution was complexed with acetylacetone (6 \times 10-3 mol L-1) in the pH range of 1--7 and was extracted into 40 m L of 1-undecanol, which was sonically dispersed in the aqueous phase. The vial was then centrifuged and cooled in an ice bath for 5 min. The solidified extract was melted and diluted to 100 m L with a solution of hydrochloric (1 mol L-1) acid in ethanol, and the concentration of palladium was determined by FI--FAAS. Under the optimum conditions, an enhancement factor of 55 and a good relative standard deviation of \pm 2.1% at 40 m g L-1 were obtained (n = 7). The proposed method was successfully applied to the determination of palladium in different types of water samples. Accuracy was assessed through recovery experiments, independent analysis by furnace atomic absorption spectrometry, and analysis of a certified reference ore by the proposed method.

___

  • Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, Pergamon Press, Oxford, New York, 1989.
  • Daniel, S.; Gladis, J. M.; Rao, T. P. Anal. Chim. Acta 2003, 488, 173–182.
  • Rao C. R. M.; Reddi, G. S. Trends Anal. Chem. 2000, 19, 565–586.
  • Ravindra, K.; Bencs, L.; Van Grieken, R. Sci. Total Environ. 2004, 318, 1–43.
  • Godlewska-Zylkiewicz, B. Microchim. Acta 2004, 147, 189–210.
  • Soylak, M.; Tuzen, M. J. Hazard. Mater. 2008, 152, 656–661.
  • Anthemidis, A. N.; Themelis, D. G.; Stratis, J. A. Talanta 2001, 54, 37–43.
  • Ciezynska, A.; Wisniewski, M. J. Sep. Purif. Technol. 2010, 73, 202–207.
  • Bulut, V. N.; Tufekci, M.; Duran, C.; Soylak, M.; Kantekin, H. CLEAN – Soil, Air, Water 2010, 38, 678–683. Najafi, E.; Sadeghi, O.; Tavassoli, N.; Mirahadpour, P.; Lotfizadeh Zhad, H. R. Anal. Sci. 2010, 26, 479–483. Duran, C.; ¨ Ozde¸s, D.; C ¸ elenk Kaya, E.; Kantekin, H.; Numan Bulut, V.; T¨ ufek¸ ci, M. Turk. J. Chem. 2012, 36, 445–456.
  • Yu, F.; Xi, C.; He, Zh.; Chen, L. Anal. Lett. 2010, 43, 972–982.
  • Liang, P.; Zhao, E.; Li, F. Talanta 2009, 77, 1854–1857.
  • Xia, L.; Hu, B. J. Mass Spectrom. 2007, 42, 803–810.
  • Xia, L.; B.; Jiang, Z.; Wu, Y.; Liang, Y. Anal. Chem. 2004, 76, 2910–2915.
  • Mohammadi, S. Z.; Afzali, D.; Taher, M. A.; Baghelani, Y. M. Michrochim. Acta 2010, 168, 123–128.
  • Ahmadzadeh Kokya, T.; Farhadi, Kh. J. Hazard. Mater. 2009, 169, 726–733.
  • Mohamadi M.; Mostafavi, A. Talanta 2010, 81, 309–313.
  • Dadfarnia, S.; Haji Shabani, A. M. Anal. Chim. Acta 2010, 658, 107–119.
  • He, Y.; Lee, H. K. Anal. Chem 1997, 69, 4634–4640.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. J. Chromatogr. A 2008, 1184, 132–142.
  • Ma, J. J.; Du, X.; Zhang, J. W.; Li, C. J.; Wang, L. Z. Talanta 2009, 80, 980–984.
  • Sereshti, H.; Khojeh, V.; Karimi, M.; Samadi, S. Anal. Methods 2012, 4, 236–241.
  • Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. J. Chromatogr. A 2006, 1116, 1–
  • Eskandari, H. Turk. J. Chem. 2012, 36, 631–643.
  • Khalili Zanjani, M. R.; Yamini, Y.; Shariati, Sh.; J¨ onsson, J. ˚ A. Anal. Chim. Acta 2007, 585, 286–293.
  • Dadfarnia, S.; Haji Shabani, A. M.; Kamranzadeh, E. Talanta 2009, 79, 1061–1065.
  • Dadfarnia, S.; Salmanzadeh, A. M.; Haji Shabani, A. M. Anal. Chim. Acta 2008, 623, 163–167.
  • Dadfarnia, S.; Mirzaei, M.; Haji Shabani, A. M.; Ramazanzadeh, B. Turk. J. Chem. 2012, 36, 614–623.
  • Dadfarnia, S.; Haji Shabani, A. M.; Mirshamsi, A. Turk. J. Chem. 2011, 35, 625–636.
  • Leong, M. I.; Huang, S. D. J. Chromatogr. A 2008, 1211, 8–12.
  • Chang, Q.; Zhang, J.; Du, X.; Ma, J.; Li, J. Front. Environ. Sci. Eng. Chin. 2010, 4, 187–195.
  • Priego-L´ opez, E.; Luque de Castro, M. D. Chromatographia 2003, 57, 513–518.
  • Abdollahzadeh, Y.; Yamini, Y.; Jabbari, A.; Esrafili A.; Rezaee, M. Anal. Methods 2012, 4, 830–837.
  • Li, P.; Zhu, Xi.; Hong, Sh.; Tian, Zh.; Yang, J. Anal. Methods 2012, 4, 995–1000.
  • Marczenko, Z. Separation Spectrophotometric Determination of Elements, Ellis Horwood Limited, Chichester, UK, 19 Dilts, R. V. Analytical Chemistry, D. Van Nostrand Company, New York, 1974.
  • Pe˜ nalver, A.; Pocurull, E.; Borrull, F.; Marc´ e, R. M. J. Chromatogr. A 2000, 872, 191–201.
  • Sarri´ on, M. N.; Santos, F. J.; Galceran, M. T. J. Chromatogr. A 2002, 947, 155–165.
  • Psillakis, E.; Kalogerakis, N. J. Chromatogr. A 2001, 907, 211–219.
  • Lambropoulou, D. A.; Albanis, T. A. J. Chromatogr. A 2004, 1049, 17–23.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A new anthracene derivative of calix[4]arene as a fluorescent chemosensor

Özlem ŞAHİN, Mustafa ŞAHİN, - Nuriye, Nuriye KOÇAK, Mustafa YILMAZ

Optimization of synthesizing glucose 1-phosphate by sodium tripolyphosphate as a phosphorus acylating agent using response surface methodology

Li-e JIN, Fenfen CHANG, Xiaojuan WANG, Qing CAO

Optimization of a gas chromatography–mass spectrometry method using chemometric techniques for the determination of ezetimibe in human plasma

Ebru UCAKTURK, Nuran OZALTIN

Synthesis of 3,4-diaryl-1-phenyl-4,5-dihydro-1H-pyrazole-5-carbonitriles via 1,3-dipolar cycloaddition reactions

Jayaroopa PRABHASHANKAR, Vasanth Kumar GOVINDAPPA, Ajay Kumar KARIYAPPA

Molecular mechanism of Diels--Alder reaction between (E)-3,3,3-trichloro-1-nitropropene and cyclopentadiene: B3LYP/6-31G(d) computational study

Radomir JASINSKI, Andrzej BARANSKI

Ultrasound-assisted emulsification–solidified floating organic drop microextraction combined with flow injection–flame atomic absorption spectrometry for the determination of palladium in water samples

Ali Mohammad HAJI SHABANI, Mooud AMIRKAVEI, Shayessteh DADFARNIA

Aerosol-assisted chemical vapor deposition of copper sulfide nanostructured thin film from newly synthesized single-source precursor

Sohail SAEED, Naghmana RASHID, Khuram Shahzad AHMAD

Synthesis, spectroscopic characterization, and biological screening of binuclear transition metal complexes of bicompartmental Schiff bases containing indole and resorcinol moieties

Mahendra Raj KAREKAL, Mruthyunjayaswamy BENNIKALLU HIRE MATHADA

Synthesis and biological activities of methylenebis-4H-1,2,4-triazole derivatives

Yıldız UYGUN, Hacer BAYRAK, Havva ÖZKAN

Synthesis of novel benzimidazole salts and microwave-assisted catalytic activity of in situ generated Pd nanoparticles from a catalyst system consisting of benzimidazol salt, Pd(OAc)2, and base in a Suzuki-Miyaura reaction

Ülkü YILMAZ, Hasan KÜÇÜKBAY, Sevim TÜRKTEKİN ÇELİKESİR