Theoretical study on the addition reaction between propadienylidene and methyleneimine

The reaction mechanism between propadienylidene and methyleneimine was systematically investigated employing the second-order Møller--Plesset perturbation theory (MP2) method with the 6 -- 31 + G* basis set. Geometry optimization, vibrational analysis, and energy property of the involved stationary points on the potential energy surface were calculated. The energies of the different species were corrected by single point energy calculations at the CCSD (T) // MP2 / 6 -- 31 + G* level. From the surface energy profile, one important initial intermediate characterized by a 3-membered ring structure was located via a transition state firstly. After that, 3 different products possessing 3- and 4-membered ring characters were obtained through corresponding reaction pathways. In the first reaction pathway (1), a 3-membered ring alkyne compound was obtained. A 4-membered ring conjugated diene compound was produced in the other 2 reaction pathways, pathways (2R) and (2L). The energy barrier of the rate-determining step of pathway (1) is higher than those of the pathways (2R) and (2L), where the ultimate products of pathways (2R) and (2L) are more stable than that of pathway (1). Therefore, the dominating product of the addition reaction between propadienylidene and methyleneimine should be the 4-membered ring conjugated diene compound.

Theoretical study on the addition reaction between propadienylidene and methyleneimine

The reaction mechanism between propadienylidene and methyleneimine was systematically investigated employing the second-order Møller--Plesset perturbation theory (MP2) method with the 6 -- 31 + G* basis set. Geometry optimization, vibrational analysis, and energy property of the involved stationary points on the potential energy surface were calculated. The energies of the different species were corrected by single point energy calculations at the CCSD (T) // MP2 / 6 -- 31 + G* level. From the surface energy profile, one important initial intermediate characterized by a 3-membered ring structure was located via a transition state firstly. After that, 3 different products possessing 3- and 4-membered ring characters were obtained through corresponding reaction pathways. In the first reaction pathway (1), a 3-membered ring alkyne compound was obtained. A 4-membered ring conjugated diene compound was produced in the other 2 reaction pathways, pathways (2R) and (2L). The energy barrier of the rate-determining step of pathway (1) is higher than those of the pathways (2R) and (2L), where the ultimate products of pathways (2R) and (2L) are more stable than that of pathway (1). Therefore, the dominating product of the addition reaction between propadienylidene and methyleneimine should be the 4-membered ring conjugated diene compound.

___

  • Mitani, M.; Kobanashi, Y.; Koyama, K. J. Chem. Soc. Perkin Trans. I 1995, 653–655.
  • Garcia, M.; Campo, C. D.; Llama, E. F. J. Chem. Soc. Perkin Trans. I 1995, 1771–1773.
  • Kostikov, R. R.; Khlebnikov, A. F.; Bespalov, V. Y. J. Phys. Org. Chem. 1993, 6, 83–84.
  • Wang, Y.; Li, H. R.; Wang, C. M.; Xu, Y. J.; Han, S. J. Acta Phys-Chim. Sin. 2004, 20, 1339–1344.
  • Stang, P. J. Acc. Chem. Res. 1982, 15, 348–354.
  • Lu, X. H.; Wang, Y. X. J. Phys. Chem. A 2003, 107, 7885–7890.
  • Apeloig, Y.; Karni, M.; Stang, P. J. J. Am. Chem. Soc. 1983, 105, 4781–4792.
  • Fox, D. P.; Stang, P. J.; Apeloig, Y.; Karni, M. J. Am. Chem. Soc. 1986, 108, 750–756.
  • Herges, R.; Mebel, A. J. Am. Chem. Soc. 1994, 116, 8229–8237.
  • Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Hess, B. A.; Schaad, L. J. J. Am. Chem. Soc. 1987, 109, 5183–5188.
  • Seburg, R. A.; DePinto, J. T.; Patterson, E. V.; McMahon, R. J. J. Am. Chem. Soc. 1995, 117, 835–836.
  • MacAllister, T.; Nicholson, A. J. Chem. Soc. Faraday Trans. I 1981, 77, 821–825.
  • Seburg, R. A.; MacMahon, R. Angew. Chem. Int. Ed. Engl. 1995, 34, 2009–2012.
  • Seburg, R. A.; Patterson, E. V.; Stanton, J. F.; McMahon, R. J. J. Am. Chem. Soc. 1997, 119, 5847–5856.
  • Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Spirko, V.; Hess, B. A.; Schaad, L. J. J. Chem. Phys. 1989, 91, 4763–4863.
  • V´ asquez, J.; Harding, M. E.; Gauss, J.; Stanton, J. F. J. Phys. Chem. A 2009, 113, 12447–12453.
  • Taatjes, C. A.; Klippenstein, S. J.; Hansen, N.; Miller, J. A.; Cool, T. A.; Wang, J.; Law, M. E.; Westmoreland, P. R. Phys. Chem. Chem. Phys. 2005, 7, 806–813.
  • Gleiter, R.; Hoffmann, R. J. Am. Chem. Soc. 1968, 90, 5457–5460.
  • Lee, T. J.; Bunge, A.; Schaefer, H. F. J. Am. Chem. Soc. 1985, 107, 137–142.
  • Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900–5909.
  • Shepard, R.; Banerjee, A.; Simons, J. J. Am. Chem. Soc. 1979, 101, 6174–6178.
  • Jonas, V.; Bohme, M.; Frenking, G. J. Phys. Chem. 1992, 96, 1640–1648.
  • Takahashi, J.; Yamashita, K. J. Chem. Phys. 1996, 104, 6613–6627.
  • Fan, Q.; Pfeiffer, G. V. Chem. Phys. Lett. 1989, 162, 472–478.
  • Walch, S. P. J. Chem. Phys. 1995, 103, 7064–7071.
  • Goulay, F.; Trevitt, A. J.; Meloni, G.; Selby, T. M.; Osborn, D. L.; Taatjes, C. A.; Vereecken, L.; Leone, S. R. J. Am. Chem. Soc. 2009, 131, 993–1005.
  • Vrtilek, J. M.; Gottlieb, C. A.; Gottlieb, E. W.; Killian, T. C.; Thaddeus, P. Astrophys. J. 1990, 364, L53–56. Gottlieb, C. A.; Killian, T. C.; Thaddeus, P.; Botschwina, P.; Flugge, J.; Oswald, M. J. Chem. Phys. 1993, 98, 4478–4485.
  • Stanton, J. F.; DePinto, J. T.; Seburg, R. A.; Hodges, J. A.; McMahon, R. J. J. Am. Chem. Soc. 1997, 119, 429–430.
  • Hodges, J. A.; McMahon, R. J.; Sattelmeyer, K. W.; Stanton, J. F. Astrophys. J. 2000, 544, 838–842.
  • Peter, B.; Rainer, O. J. Phys. Chem. A 2010, 114, 9782–9787.
  • Aguilera-Iparraguirre, J.; Boese, A. D.; Klopper, W.; Ruscic, B. Chem. Phys. 2008, 346, 56–68.
  • Wu, Q.; Hao, Q.; Wilke, J. J.; Simmonett, A. C.; Yamaguchi, Y.; Li, Q.; Fang, D.-C.; Schaefer, H. F. J. Chem. Theory. Comput. 2010, 6, 3122–3130.
  • Herbst, E. Angew. Chem. Int. Ed. Engl. 1990, 29, 595–608.
  • Cernicharo, J.; Gottlieb, C. A.; Guelin, M.; Killian, T. C.; Paubert, G.; Thaddeus, P.; Vrtilek, J. M. Astrophys J. 1991, 368, L39–L41.
  • Achkasova, E.; Araki, M.; Denisov, A.; Maier, J. P. J. Mol. Spectrosc. 2006, 237, 70–75.
  • Peel, J. B.; Willett, G. D. J. Chem. Soc. Faraday Trans. 2 1975, 71, 1799–1804.
  • Hamada, Y.; Hashiguchi, K.; Tsuboi, M.; Koga, Y.; Kondo, S. J. Mol. Spectrosc. 1984, 105, 70–80.
  • Bock, H.; Dammel, R. J. Am. Chem. Soc. 1988, 110, 5261–5269.
  • Dickens, J. E.; Irvine, W. M.; DeVries, C. H.; Ohishi, M. Astrophys. J. 1997, 479, 307–312.
  • Milligan, D. E. J. Chem. Phys. 1961, 35, 1491–1497.
  • Halonen, L.; Duxbury, G. J. Chem. Phys. 1985, 83, 2078–2090.
  • Halonen, L.; Duxbury, G. J. Chem. Phys. 1985, 83, 2091–2096.
  • Teslja, A.; Nizamov, B.; Dagdigian, P. J. J. Phys. Chem. A 2004, 108, 4433–4439.
  • Jia, Z.; Schlegel, H. B. J. Phys. Chem. A 2009, 113, 9958–9964.
  • Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503–506.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. 1998, Gaussian 98, revision A.9; Gaussian, Inc.: Pittsburgh, PA
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

C2-Symmetric chiral diamine ligands for enantiomeric recognition of amino acid esters and mandelic acid by proton NMR titration method

Hayriye ARAL, Tarık ARAL, Mehmet ÇOLAK, Berrin ZİYADANOĞULLARI, Recep ZİYADANOĞULLARI

New synthetic strategy for novel 6-arylazo-5-methyl-3-aryl-thiazolo[2,3-c]- [1,2,4]triazoles and study of their solvatochromic properties

Ahmad Sami SHAWALI, Mohie Eldin Moustafa ZAYED

A two-component protocol for synthesis of 3-(2-(substituted phenylamino)thiazol-4-yl)-2H-chromen-2-ones

Aamer SAEED, Mubeen ARIF, Madiha IRFAN, Michael BOLTE

Environmentally green synthesis of thioformamide derivatives

Ali RAMAZANI, Sang Woo JOO, Fatemeh Zeinali NASRABADI

Flavonoid constituents of Sideritis caesarea

Belkıs HALFON, Ece ÇİFTÇİ, Gülaçtı TOPÇU

$C_2$-symmetric chiral diamine ligands for enantiomeric recognition of amino acid esters and mandelic acid by proton NMR titration method

Hayriye ARAL, Tar k ARAL, Mehmet C OLAK, Berrin ZİYADANO GULLARI, Recep ZİYADANO GULLARI

A phthalocyanine--fluorescein conjugate

İlker ÜN, Yunus ZORLU, Hanife İBİŞOĞLU, Fabienne DUMOULIN

Exploring distinct binding site regions of $beta_2$-adrenergic receptor via coarse-grained molecular dynamics simulations

Ebru Demet AKDO GAN, Sibel ÇAKAN

A phthalocyanine - fluorescein conjugate

Vefa AHSEN, Yunus ZORLU, İlker ÜN, Fabienne DUMOULIN, Hanife İBİŞ O ĞLU

Electrochemistry of 2,6-diaminopurine on multiwall carbon nanotube modified glassy carbon electrode

Ebru MAVİOĞLU AYAN, Şükriye ULUBAY KARABİBEROĞLU, Zekerya DURSUN