New triplet silylenes M–Si–M′–X along with some unusual cyclic forms (M = Li, Na, and K; M′ = Be, Mg, and Ca; X = F, Cl, and Br)

New triplet silylenes M–Si–M′–X along with some unusual cyclic forms (M = Li, Na, and K; M′ = Be, Mg, and Ca; X = F, Cl, and Br)

Comparison of 54 M–Si–M′ –X species is carried out using quantum mechanical ab initio and DFT computations at B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M = Li, Na, K; M′ = Be, Mg, Ca, and X = F, Cl, Br). All triplet species with M = K appear more linear than their corresponding ones with Li and Na. The electronegativity reactivity descriptor for each halogen (X = F, Cl, Br) is used as a tool to evaluate the interrelated properties of these silylenes. Stability, assumed as singlet–triplet energy difference (∆ES−T ) for each series depends on the substituent’s electropositivity, analyzed by applying appropriate isodesmic reactions. Stability of triplet M–Si–M′ –X silylenes increases as functions of electropositivity of α-substituents and of β -substituents. The purpose of the present work was therefore to assess the influence of different di-alkaline metals with different β -substituents on the singlet–triplet energy gaps.

___

  • 1. Schoeller, W. W.; Sundermann, A.; Reiher, M. Inorg. Chem. 1999, 38, 29-37.
  • 2. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-92.
  • 3. Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479-3511.
  • 4. Sasamori, T.; Tokitoh, N. in Encyclopedia of Inorganic Chemistry II; King, R. B., Eds. John Wiley & Sons: Chichester, UK, 2005, pp. 1698-1740.
  • 5. Fueno, T. Eds. The Transition State: A Theoretical Approach; Gordon and Breach Science Publishers: Langhorne, PA USA, 1999, pp. 147-161.
  • 6. Barden, C. J.; Schaefer, H. F. J. Chem. Phys. 2000, 112, 6515-6516.
  • 7. Lee, E. P. F.; Dyke, J. M.; Wright, T. G. Chem. Phys. Lett. 2000, 326, 143-150.
  • 8. Bruce, M. Chem. Rev. 1991, 91, 197-257.
  • 9. Apeloig, Y. in The Chemistry of Organic Silicon Compounds; Patai, S.; Rappoport, Z. Eds. Vol. 1, Wiley: New York, NY, USA, 1989, p. 57.
  • 10. Vessally, E. Heteroa. Chem. 2008, 19, 245-251.
  • 11. Schaefer, H. F. Science 1986, 231, 1100-1107.
  • 12. Holthausen, M. C.; Koch, W.; Apeloig, Y. J. Am. Chem. Soc. 1999, 121, 2623-2624.
  • 13. Sekiguchi, A.; Tanaka, T.; Ichinohe, M.; Akiyama, K.; Gaspar, P. P. J. Am. Chem. Soc. 2008, 130, 426-427.
  • 14. Grev, R. S.; Schaefer, H. F.; Gaspar, P. P. J. Am. Chem. Soc. 1991, 113, 5638-5643.
  • 15. Luke, B. T.; Pople, J. A.; Krogh-Jespersen, M. B.; Apeloig, Y.; Karni, M.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 270-284.
  • 16. Kalcher, J.; Sax, A. F. J. Mol. Struct. (THEOCHEM) 1992, 253, 287-302.
  • 17. Krogh-Jespersen, K. J. Am. Chem. Soc. 1985, 107, 537-543.
  • 18. Colvin, M. E.; Schaefer, H. F.; Bicerano, J. J. Chem. Phys. 1985, 83, 4581-4584.
  • 19. Inoue, Sh.; Ichinohe, M.; Sekiguchi, A. Organometallics 2008, 27, 1358-1360.
  • 20. Nefedov, O. M.; Egorov, M. P.; Ioffe, A. I.; Menchikov, L. G.; Zuev, P. S.; Minkin, V. I.; Simkin, Ya. B.; Glukhovtsev, M. N. Pure Appl. Chem. 1992, 64, 265-314.
  • 21. Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C. J. Phys. Chem. 1999, 103, 8213-8221.
  • 22. Zhu, Z.; Bally, T.; Stracener, L. L.; McMahon, R. J. J. Am. Chem. Soc. 1999, 121, 2863-2874.
  • 23. Wang, Y.; Yuzawa, T.; Hamaguchi, H.; Toscano, J. P. J. Am. Chem. Soc. 1999, 121, 2875-2882.
  • 24. Wang, Y.; Toscano, J. P. J. Am. Chem. Soc. 2000, 122, 4512-4513.
  • 25. Gordon, M. S. Chem. Phys. Lett. 1985, 114, 348-352.
  • 26. Kassaee, M. Z.; Musavi, S. M.; Ghambarian, M. J. Organomet. Chem. 2006, 691, 1845-1856.
  • 27. Razuvaev, G. A.; Gribov, B. G.; Domrachev, G. A.; Salamatin, B. A. In Metalloorganicheskie soedineniya v elektronike (Organometallic Compounds in Electronics), Nauka: Moscow, USSR, 1972.
  • 28. Gribov, B. G.; Domrachev, G. A.; Zhuk, B. V.; Kaverin, B. S.; Kozyrkin, B. I.; Mel’nikov, V. V.; Suvorova, O. N. In Precipitation of Films and Covers by Decomposition of Metalloorganic Compounds. Moscow, USSR: Science, 1981, p. 322.
  • 29. Kassaee, M. Z.; Buazar, F.; Soleimani-Amiri, S. J. Mol. Struct. (THEOCHEM) 2008, 866, 52-57.
  • 30. Kendall, R. A.; Jr. Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796-6806.
  • 31. Yan, Z.; Truhlar, D. G. Theor. Chem. Account. 2008, 120, 215-241.
  • 32. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory. John Wiley and Sons: New York, NY, USA, 1986.
  • 33. Becke, A. D. Phys. Rev. 1988, 38, 3098.
  • 34. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
  • 35. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785.
  • 36. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; et al. J. Comput. Chem. 1993, 14, 1347-1363.
  • 37. Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A 2002, 106, 4158-4167.
  • 38. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, NY, USA, 1989.
  • 39. Hoffmann, R.; Schleyer, P. v. R.; Schaefer. H. F. Angew. Chem. Int. Ed. 2008, 47, 7164-7167.
  • 40. Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer, H. F. J. Am. Chem. Soc. 1996, 118, 9908-9914.
  • 41. Bundhun, A.; Abdallah, H. H.; Ramasami, P.; Schaefer, H. F. J. Phys. Chem. A 2010, 114, 13198-13212.
  • 42. Ward, S. G.; Taylor, R. C. In Metal-Based Anti-Tumor Drugs; Gielen, M. F. Ed., Freund Publ.: London, UK, 1988.
  • 43. Burgert, B.; Driess, M. In Functional Molecular Silicon Compounds II. Springer International Publishing: New York, NY, USA, 2013, pp. 85-123.
  • 44. Moss, R. A.; Fantina, M. E. J. Am. Chem. Soc. 1978, 100, 6788-6790.
  • 45. Nyíri, K. Szilvási, T.; Veszprémi, T. Dalton Trans. 2010, 39, 9347-9352.