New iodine-apatites: synthesis and crystal structure

New iodine-apatites: synthesis and crystal structure

The paper describes methods for the preparation of compounds with an apatite structure containing only iodine atoms in the “halogen” position. The crystal structure of the compounds was refined by the Rietveld method. The resulting apatites have a structure with a space group P63 /m and have the following unit cell parameters: $Ba^{4f} _{1.78(2)}Ba^{6h} _{2.75(2){(PO_4 )_3 I_{0.04(2) }$(a = 10.18609(34) Å, c = 7.71113(30) Å, V = 692.889(54) $Å^3$ , R = 5.448 %), $Pb^{4f} _{1.82(2)}Pb^{6h} _{2.75(2)}(PO_4 )_3 I_{0.13(2) }$(a = 9.87882(18) Å, c = 7.43222(16) Å, V = 628.144(26) $Å^3$ , R = 8.533 %), $Pb^{4f} _{1.90(2)}Pb^{6h} _{2.68(2)}(PO_4 )_3 I_{0.16(2)} (a = 9.87058(48) Å, c = 7.41255(46) Å, V = 625.437(72) $Å3$ , R = 5.433 %). The study of the crystal structure showed a relatively low efficiency of the binding of iodine in the apatite matrix.

___

  • 1. Edwards RR. Iodine-129: Its occurrence in nature and its utility as a tracer. Science 1962; 137 (3533): 851-853. doi: 10.1126/ science.137.3533.851
  • 2. Moore RC, Pearce CI, Morad JW, Chatterjeea S, Levitskaiaa TG et al. Iodine immobilization by materials through sorption and redoxdriven processes: A literature review. Science of the Total Environment 2020; 716: 132820. doi: 10.1016/j.scitotenv.2019.06.166
  • 3. Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden JL. Materials and processes for the effective capture and immobilization of radioiodine: A review. Journal of Nuclear Materials 2016; 470: 307-326. doi: 10.1016/j.jnucmat.2015.11.038
  • 4. Le Gallet S, Campayo L, Courtois E, Hoffmann S, Grin Y et al. Spark plasma sintering of iodine-bearing apatite. Journal of Nuclear Materials 2010; 400 (3): 251-256. doi: 10.1016/j.jnucmat.2010.03.011
  • 5. Campayo L, Le Gallet S, Perret D, Courtois E, Cau Dit Coumes C et al. Relevance of the choice of spark plasma sintering parameters in obtaining a suitable microstructure for iodine-bearing apatite designed for the conditioning of I-129. Journal of Nuclear Materials 2015; 457: 63-71. doi: 10.1016/j.jnucmat.2014.10.026
  • 6. Coulon A, Laurencin D, Grandjean A, Le Gallet S, Minier L et al. Key parameters for spark plasma sintering of wet-precipitated iodatesubstituted hydroxyapatite. Journal of the European Ceramic Society 2016; 36 (8): 2009-2016. doi: 10.1016/j.jeurceramsoc.2016.02.041
  • 7. White T. Apatite - An Adaptive Framework Structure. Reviews in Mineralogy and Geochemistry 2005; 57 (1): 307-401. doi: 10.2138/ rmg.2005.57.10
  • 8. Tite T, Popa AC, Balescu LM et al. Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods. Materials (Basel) 2018; 11 (11): 1-62. doi: 10.3390/ma11112081
  • 9. Potanina E, Golovkina L, Orlova A, Nokhrin A, Boldin M et al. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering. Journal of Nuclear Materials 2016; 473: 93-98. doi: 10.1016/j.jnucmat.2016.02.014
  • 10. Orlova AI, Ojovan MI. Ceramic mineral waste-forms for nuclear waste immobilization. Materials (Basel) 2019; 12 (16): 2638. doi: 10.3390/ ma12162638
  • 11. Bogdanov RV, Kuznetsov RA. Aluminosilicophosphate geoceramics as matrices for the immobilization of partitioned 90Sr and 137Cs wastes. Radiochemistry 2006; 48 (2): 204-211. doi: 10.1134/S1066362206020202
  • 12. Kuznetsov RA, Platonova NV, Bogdanov RV. A polyphase geoceramic matrix for joint immobilization of the strontium-cesium and rare earth fractions of high-level waste. Radiochemistry 2015; 57 (2): 200-206. doi: 10.1134/S1066362215020137
  • 13. Bulanov EN, Knyazev AV, Lelet MI. Thermodynamic Modeling of Integration of Strontium into Bone Tissue Hydroxyapatite. Applied Solid State Chemistry 2017; 1 (1): 42-47. doi: 10.18572/2619-0141-2017-1-1-42-47
  • 14. Wang J. Incorporation of iodine into apatite structure: A crystal chemistry approach using Artificial Neural Network. Frontiers in Earth Science 2015; 3 (June): 1-11. doi: 10.3389/feart.2015.00020
  • 15. Hartnett TQ, Ayyasamy MV, Balachandran P V. Prediction of new iodine-containing apatites using machine learning and density functional theory. MRS Communications 2019; 9 (3): 882-890. doi: 10.1557/mrc.2019.103
  • 16. Venkatesan S, Hassan Mul, Ryu HJ. Adsorption and immobilization of radioactive ionic-corrosion-products using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications. Journal of Nuclear Materials 2019; 514: 40-49. doi: 10.1016/j.jnucmat.2018.11.026
  • 17. Zhang Z, Ebert WL, Yao T, Lian J, Valsaraj KT et al. Chemical Durability and Dissolution Kinetics of Iodoapatite in Aqueous Solutions. ACS Earth and Space Chemistry 2019; 3 (3): 452-462. doi: 10.1021/acsearthspacechem.8b00162
  • 18. Stennett MC, Pinnock IJ, Hyatt NC. Rapid synthesis of $Pb_5(VO_4)_3I$, for the immobilisation of iodine radioisotopes, by microwave dielectric heating. Journal of Nuclear Materials 2011; 414 (3): 352-359. doi: 10.1016/j.jnucmat.2011.04.041
  • 19. Suetsugu Y. Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process. Journal of Nuclear Materials 2014; 454 (1-3): 223-229. doi: 10.1016/j.jnucmat.2014.07.073
  • 20. Rietveld HM. The Rietveld method. Physica Scripta 2014; 89 (9). doi: 10.1088/0031-8949/89/9/098002
  • 21. Alberius-Henning P, Mattsson C, Lidin S. Crystal structure of pentastrontium tris (phosphate) bromide, Sr5 (PO4)3Br and of pentabariumtris(phosphate) bromide $Ba_5(PO_4)_3$ Br, two bromoapatites. Zeitschrift für Kristallographie - New Crystal Structures 2000; 215 (3): 345-346. doi: 10.1515/ncrs-2000-0319
  • 22. Sudarsanan K, Young RA, Wilson AJC. The structures of some cadmium `apatites’ $Cd_5(MO_4)_3 X$ . I. Determination of the structures of$Cd_5(VO_4)_3I, Cd_5(PO_4)_3Br, Cd_5(AsO_4)3Br and Cd_5(VO_4)_3$ Br . Acta Crystallographica Section B: Structural Science 1977; 33 (10): 3136-3142. doi: 10.1107/s0567740877010413
  • 23. Patterson AL. The scherrer formula for X-ray particle size determination. Physical Review 1939; 56 (10): 978-982. doi: 10.1103/ PhysRev.56.978
  • 24. Sugiyama K, Tokonami M. The crystal structure refinements of the strontium and barium orthophosphates. Mineralogical Journal 1990: 141-146.
  • 25. Hata M, Marumo F, Iwai S, Aoki H. Structure of barium chlorapatite. Acta Crystallographica Section B: Structural Science 1979; 35 (10): 2382-2384. doi: 10.1107/s0567740879009377
  • 26. Elliott JC, Dykes E, Mackie PE. Structure of bromapatite and the radius of the bromide ion. Acta Crystallographica Section B: Structural Science 1981; 37 (2): 435-438. doi: 10.1107/s0567740881003208
  • 27. Henning PA, Lidin S, Petříček V. Iodo-oxyapatite, the first example from a new class of modulated apatites. Acta Crystallographica Section B: Structural Science 1999; 55 (2): 165-169. doi: 10.1107/s0108768198012312
  • 28. Lim SC, Baikie T, Pramana SS, Smith R, White TJ. Apatite metaprism twist angle (φ) as a tool for crystallochemical diagnosis. Journal of Solid State Chemistry 2011; 184 (11): 2978-2985. doi: 10.1016/j.jssc.2011.08.031
  • 29. Hata M, Marumo F, Iwai SI. Structure of a Lead Apatite $Pb_9(PO_4)_6$ . Acta Crystallographica B 1980; 36: 2128-2130. doi: 10.1107/ S0567740880008096
  • 30. Chernorukov NG, Knyazev AV, Bulanov EN. Phase transitions and thermal expansion of apatite-structured compounds. Inorganic Materials 2011; 47 (2): 172-177. doi: 10.1134/S002016851101002X
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Effect of current density on the microstructure and morphology of the electrodeposited nickel coatings

Amel BOUKHOUIETE, Saliha BOUMENDJEL, Nour El Houda SOBHI

A survey on surface morphology control of cross-linked poly(N-vinylpyrrolidone) polymer particle via inverse suspension polymerization

Sedat ÇETİN, Uğur SOYKAN

Characterization of extracts from Papaver rhoeas and potential valorization of these extracts in dyeing applications

Beatrice GEORGE, Mohand Ouidir BOUSSOUM, Abdelkader ALI-NEHARI, Rachida OULDMOKHTAR

N doping of $TiO_2$ nanocrystal for efficient photodegradation of organic pollutants under ultraviolet and visible light irradiation

Qianrui LV, Xiaoyou YU

Surface and chemical characteristics of platinum modified activated carbon electrodes and their electrochemical performance

Tuğrul YUMAK, Abdulkerim KARABULUT, Serap YUMAK

Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches

Çağatay DENGİZ

Application of inverse gas chromatography in the surface characterization of diethanol amine modified polystyrene based polymer

Ayşegül Çiğdem ADIGÜZEL, Burak KORKMAZ, Özlem CANKURTARAN, Fatih ÇAKAR, Bahire Filiz ŞENKAL

Preparation of G-CuO NPs and G-ZnO NPs with mallow leaves, investigation of their antibacterial behavior and synthesis of bis(indolyl)methane compounds under solventfree microwave assisted dry milling conditions using G-CuO NPs as a catalyst

Maden SULAK

Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts

Gülin Selda POZAN SOYLU, Esra Yeliz ALTUN, Z. Tuba ŞİŞMANOĞLU

Advances in polymer based Friedlander quinoline synthesis

Rajendra PATIL, Jagdish CHAVAN, Shivnath PATEL, Anil BELDAR