Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property

Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property

The aim of this work was to prepare biodegradable starch aerogels as drug carriers. The effective parametersin the synthesis and the optimal values of these parameters were determined using Minitab experimental design software.Ibuprofen was selected as a model drug for the dissolution study and loaded into optimized aerogel during the last solventexchange step. The Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that ibuprofen has been successfullyloaded into the aerogel matrix without any effect on the aerogel nature. The drug loading was calculated to be 29%.The isotherm of ibuprofen adsorption into aerogels matrices followed from the Freundlich isotherm. The in vitro releasetests of crystalline ibuprofen and ibuprofen-loaded potato starch aerogel were investigated with simulated gastric andintestinal fluids in USP 2 apparatus. It was shown that the dissolution rate of ibuprofen could be dramatically changed.Also, an improvement in the dissolution rate of ibuprofen was achieved by performing the dissolution test first in thegastric medium for 120 min and then in the intestinal medium for up to 270 min. A higher release rate (100%) wasobserved at the end of the in vitro experiment.

___

  • 1. Alnaief M, Smirnova I. In situ production of spherical aerogel microparticles. Journal of Supercritical Fluids 2011; 55 (3): 1118-1123. doi: 10.1016/j.supflu.2010.10.006
  • 2. Kistler SS. Coherent expanded aerogels and jellies. Nature 1931; 127: 741. doi: 10.1038/127741a0
  • 3. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM et al. Carbon nanotube aerogels. Advanced Materials 2007; 19 (5): 661-664. doi: 10.1002/adma.200601748
  • 4. Alnaief M, Smirnova I. Effect of surface functionalization of silica aerogel on their adsorptive and release properties. Journal of Non-Crystalline Solids 2010; 356 (33-34): 1644-1649. doi: 10.1016/j.jnoncrysol.2010.06.027
  • 5. Gurav JL, Rao AV, Bangi UKH. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. Journal of Alloys and Compounds 2009; 471 (1-2): 296-302. doi: 10.1016/j.jallcom.20 08.03.076
  • 6. Gurav JL, Rao AV, Rao AP, Nadargi DY, Bhagat SD. Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure. Journal of Alloys and Compounds 2009; 476 (1-2): 397-402. doi:10.1016/j.jallcom.20 08.09.029
  • 7. Amiri TY, Moghaddas JS. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming. International Journal of Hydrogen Energy 2015; 40: 1472-1480. doi: 10.1016/j.ij hydene.2014.11.104
  • 8. Wang CT, Wo CL, Chen IC, Huang YH. Humidity sensors based on silica nanoparticle aerogel thin films. Sensors and Actuators B 2005; 107 (1): 402-410. doi: 10.1016/j.snb.2004.10.034
  • 9. Wei TY, Kuo CY, Hsu YJ, Lu SY, Chang YC. Tin oxide nanocrystals embedded in silica aerogel: Photoluminescence and photocatalysis. Microporous and Mesoporous Materials 2008; 112 (1-3): 580-588. doi: 10.1016/j.micromeso.2007.10.040
  • 10. Gonçalves VSS, Gurikov P, Poejo J, Matias AA, Heinrich S et al. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2016; 107: 160-170. doi: 10.1016/j.ejpb.2016.07.003
  • 11. García-González CA, Alnaief M, Smirnova I. Polysaccharide-based aerogels— promising biodegradable carriers for drug delivery systems. Carbohydrate Polymers 2011; 86 (4): 1425-1438. doi: 10.1016/j.carbpol.2011.06.066
  • 12. De Marco I, Riemma S, Iannone R. Life cycle assessment of supercritical impregnation: Starch aerogel + αtocopherol tablets. Journal of Supercritical Fluids 2019; 143: 305-312. doi: 10.1016/j.supflu.2018.09.00313.
  • 13. Maleki H, Durães L, García-González CA, Gaudio P, Portugal A et al. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science 2016; 236: 1-27. doi: 10.1016/j.cis.2016.05.011
  • 14. Mehling T, Smirnova I, Guenther U, Neubert RHH. Polysaccharide-based aerogels as drug carriers. Journal of Non-Crystalline Solids 2009; 355 (50-51): 2472-2479. doi: 10.1016/j.jnoncrysol.2009.08.038
  • 15. Ulker Z, Erkey C. An emerging platform for drug delivery: Aerogel based systems. Journal of Controlled Release 2014; 177: 51-63. doi: 10.1016/j.jconrel.2013.12.033
  • 16. Marco ID, Iannone R, Miranda S, Riemma S. An environmental study on starch aerogel for drug delivery applications: effect of plant scale-up. International Journal of Life Cycle Assessment 2018; 23: 1228-1239. doi: 10.1007/s11367-017-1351-6
  • 17. García-González CA, Jim M, Gerth J, Alvarez-Lorenzo C, Smirnova I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydrate Polymers 2015; 117: 797-806. doi: 10.1016/j.carbpol.2014.10.045
  • 18. Stergar J, Maver U. Review of aerogel-based materials in biomedical applications. Journal of Sol-Gel Science and Technology 2016; 77 (3): 738-752. doi: 10.1007/s10971-016-3968-5
  • 19. Jonassen H. Polysaccharide based nanoparticles for drug delivery applications. PhD, University of Oslo, Norway, 2014.
  • 20. Zhang N. Polysaccharide-based nanocarriers for improved drug delivery. PhD, Syracuse University, New York, NY, USA, 2013.
  • 21. Chang X, Chen D, Jiao X. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer 2010; 51 (16): 3801-3807. doi: 10.1016/j.polymer.2010.0 6.018
  • 22. Acharya G, Park K. Mechanisms of controlled drug release from drug-eluting stents. Advanced Drug Delivery Reviews 2006; 58: 387-401. doi: 10.1016/j.addr.2006.01.016
  • 23. Ulker Z, Erkey C. An advantageous technique to load drugs into aerogels: Gas antisolvent crystallization inside the pores. Journal of Supercritical Fluids 2017; 120: 310-319. doi: 10.1016/j.supflu.2016.05.033
  • 24. Sarawade PB, Kim JK, Hilonga A, Kim HT. Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sciences 2010; 12 (5): 911-918. doi: 10.1016/j.solidstatesciences.2010.01.032
  • 25. Bhagat SD, Kim YH, Moon MJ, Ahn YS, Yeo JG. A cost-effective and fast synthesis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route. Solid State Sciences 2007; 9 (7): 628-635. doi: 10.1016/j.solidstatesciences.2007.04.020
  • 26. Ubeyitogullari A, Ciftci ON. Formation of nanoporous aerogels from wheat starch. Carbohydrate Polymers 2016; 147: 125-132. doi: 10.1016/j.carbpol.2016.03.086
  • 27. Muluh NS. Central composite design analysis and optimization of cadmium adsorption from synthetic wastewater by avocado seed activated carbon. International Journal of Advanced Research and Development 2017; 5: 652-661. doi: 10.22271/advanced
  • 28. Siewert M. FIP guidelines for dissolution testing of solid oral products (final draft, 1995). Drug Information Journal 1996; 30: 1071-1084.
  • 29. Aulton ME, Taylor KMG. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. New York, NY, USA: Oxford, 2013.
  • 30. Rao AP, Rao AV. Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. Journal of Non-Crystalline Solids 2008; 354 (1): 10-18. doi: 10.1016/j.jnoncrysol.2007.07.021
  • 31. Lovskaya DD, Lebedev AE, Menshutina NV. Aerogels as drug delivery systems: In vitro and in vivo evaluations. Journal of Supercritical Fluids 2015; 106: 115-121. doi: 10.1016/j.supflu.2015.07.011
  • 32. Veres P, López-Periago A, Lázár I, Saurina J, Doming C. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. International Journal of Pharmaceutics 2015; 496: 360-370. doi: 10.1016/j.ijpharm.2015.10.045
  • 33. Tkalec G, Knez Z, Novak Z. Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. Journal of Supercritical Fluids 2015; 106: 16-22. doi: 10.1016/j.supflu.2015.06.009
  • 34. Chung H, Kim W, Park J, Cho J, Jeong T et al. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry 2015; 28: 241-246. doi: 10.1016/j.jiec.2015.02.021
  • 35. Kim Y, Kim J. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. Journal of Chemical Thermodynamics 2019; 130: 104-113. doi: 10.1016/j.jct.2018.10.005
  • 36. de Sá A, Abreu A, Moura I, Machado A. 8 - Polymeric materials for metal sorption from hydric resources. In: Grumezescu AM (editor). Water Purification. Academic Press, 2017, pp. 289-322.
  • 37. Xu W, Gao Q, Xu Y, Wu D, Sun Y et al. Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technology 2009; 191: 13-20. doi:10.1016/j.powtec.2008.09.001
  • 38. Khazraei A, Tarlani A, Naderi N, Muzart J, Abdulhameed Z et al. Enhanced release and drug delivery of celecoxib into physiological environment by the different types of nanoscale vehicles. Applied Surface Science 2017; 422: 873-882. doi: 10.1016/j.apsusc.2017.06.010
  • 39. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of Controlled Release 2011; 154: 2-19. doi: 10.1016/j.jconrel.2011.04.002