Investigation of the hydrogen bond donating ability of 1,8-naphthalenediol by NMR spectroscopy and its use as a hydrogen bonding catalyst
Investigation of the hydrogen bond donating ability of 1,8-naphthalenediol by NMR spectroscopy and its use as a hydrogen bonding catalyst
The hydrogen bond donating ability of 1,8-naphthalenediol was investigated via a series of ${}^1H$, ${}^{13}C$, and ${}^{31}P$NMR experiments. Complexation studies using triphenylphosphine oxide and cyclohexanone as hydrogen bond acceptorsrevealed that 1,8-naphthalenediol is a more effective hydrogen bond donor compared to 1-naphthol and 8-methoxy-1-naphthol. Afterwards, its effectiveness as a hydrogen bonding catalyst was demonstrated in the Friedel–Crafts-typeaddition reaction of indole to trans-β -nitrostyrene.
___
- 1. McGilvra, J. D.; Gondi, V. B.; Rawal, V. H. In Enantioselective Organocatalysis; Dalko, P. I., Ed. Wiley-VCH: Weinheim, Germany, 2007, pp. 189-254.
- 2. Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713-5743.
- 3. Akiyama, T. Chem. Rev. 2007, 107, 5744-5758.
- 4. Connon, S. J. Chem. Commun. 2008, 0, 2499-2510.
- 5. Terada, M. Synthesis 2010, 1929-1982.
- 6. Cheon, C. H.; Yamamoto, H. Chem. Commun. 2011, 47, 3043-3056.
- 7. Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518-533.
- 8. Jensen, K. H.; Sigman, M. S. J. Org. Chem. 2010, 75, 7194-7201.
- 9. Türkmen, Y. E.; Zhu, Y.; Rawal, V. H. In Comprehensive Enantioselective Organocatalysis, Vol. 2; Dalko, P. I., Ed. Wiley-VCH: Weinheim, Germany, 2013, pp. 239-288.
- 10. Türkmen, Y. E. In Nonnitrogenous Organocatalysis; Harned, A. M., Ed. CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2018, pp. 13-37.
- 11. Hine, J.; Ahn, K.; Gallucci, J. C.; Linden, S. M. J. Am. Chem. Soc. 1984, 106, 7980-7981.
- 12. Hine, J.; Linden, S. M.; Kanagasabapathy, V. M. J. Am. Chem. Soc. 1985, 107, 1082-1083.
- 13. Hine, J.; Linden, S. M.; Kanagasabapathy, V. M. J. Org. Chem. 1985, 50, 5096-5099.
- 14. Kelly, T. R.; Meghani, P.; Ekkundi, V. S. Tetrahedron Lett. 1990, 31, 3381-3384.
- 15. Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146-146.
- 16. Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. P. Natl. Acad. Sci. USA 2004, 101, 5846-5850.
- 17. McGilvra, J. D.; Unni, A. K.; Modi, K.; Rawal, V. H. Angew. Chem. Int. Ed. 2006, 45, 6130-6133.
- 18. Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Synlett 2003, 1121-1124.
- 19. Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Adv. Synth. Catal. 2004, 346, 1117-1130.
- 20. Gao, G.; Gu, F. L.; Jiang, J. X.; Jiang, K.; Sheng, C. Q.; Lai, G. Q.; Xu, L. W. Chem. Eur. J. 2011, 17, 2698-2703.
- 21. Gao, G.; Bai, X. F.; Yang, H. M.; Jiang, J. X.; Lai, G. Q.; Xu, L. W. Eur. J. Org. Chem. 2011, 2011, 5039-5046.
- 22. Zheng, L. S.; Jiang, K. Z.; Deng, Y.; Bai, X. F.; Gao, G.; Gu, F. L.; Xu, L. W. Eur. J. Org. Chem. 2013, 2013, 748-755.
- 23. Saied, O.; Simard, M.; Wuest, J. D. Organometallics 1996, 15, 2345-2349.
- 24. Saied, O.; Simard, M.; Wuest, J. D. J. Org. Chem. 1998, 63, 3756-3757.
- 25. Türkmen, Y. E.; Rawal, V. H. J. Org. Chem. 2013, 78, 8340-8353.
- 26. Dilek, Ö.; Tezeren, M. A.; Tilki, T.; Ertürk, E. Tetrahedron 2018, 74, 268-286.
- 27. Foti, M. C.; Barclay, L. R. C.; Ingold, K. U. J. Am. Chem. Soc. 2002, 124, 12881-12888.
- 28. Foti, M. C.; Johnson, E. R.; Vinqvist, M. R.; Wright, J. S.; Barclay, L. R. C.; Ingold, K. U. J. Org. Chem. 2002, 67, 5190-5196.
- 29. Manini, P.; Bietti, M.; Galeotti, M.; Salamone, M.; Lanzalunga, O.; Cecchini, M. M.; Reale, S.; Crescenzi, O.; Napolitano, A.; De Angelis, F. et al. ACS Omega 2018, 3, 3918-3927.
- 30. Dominelli-Whiteley, N.; Brown, J. J.; Muchowska, K. B.; Mati, I. K.; Adam, C.; Hubbard, T. A.; Elmi, A.; Brown, A. J.; Bell, I. A. W.; Cockroft, S. L. Angew. Chem. Int. Ed. 2017, 56, 7658-7662.
- 31. Hasegawa, A.; Naganawa, Y.; Fushimi, M.; Ishihara, K.; Yamamoto, H. Org. Lett. 2006, 8, 3175-3178.
- 32. Moriyama, K.; Sugiue, T.; Saito, Y.; Katsuta, S.; Togo, H. Adv. Synth. Catal. 2015, 357, 2143-2149.
- 33. Korth, H. G.; Mulder, P. J. Org. Chem. 2013, 78, 7674-7682.
- 34. Musso, H.; Matthies, H. G. Chem. Ber. 1961, 94, 356-368.
- 35. Pines, E.; Magnes, B. Z.; Lang, M. J.; Fleming, G. R. Chem. Phys. Lett. 1997, 281, 413-420.
- 36. Chen, Y. T.; Wu, P. J.; Peng, C. Y.; Shen, J. Y.; Tsai, C. C.; Hu, W. P.; Chou, P. T. Phys. Chem. Chem. Phys. 2017, 19, 28641.
- 37. Cosmo, R.; Hambley, T. W.; Sternhell, S. Acta Cryst. 1990, B46, 557-562.
- 38. Fan, Y.; Feng, P.; Liu, M.; Pan, H.; Shi, Y. Org. Lett. 2011, 13, 4494-4497.
- 39. Yang, Y.; Lowry, M.; Xu, X.; Escobedo, J. O.; Sibrian-Vazquez, M.; Wong, L.; Schowalter, C. M.; Jensen, T. J.; Fronczek, F. R.; Warner, I. M. et al. P. Natl. Acad. Sci. USA 2008, 105, 8829-8834.
- 40. Dessole, G.; Herrera, R. P.; Ricci, A. Synlett 2004, 2374-2378.
- 41. Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44, 6576-6579.
- 42. Fleming, E. M.; McCabe, T.; Connon, S. J. Tetrahedron Lett. 2006, 47, 7037-7042.
- 43. Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464-16465.
- 44. Rodriguez, A. A.; Yoo, H.; Ziller, J. W.; Shea, K. J. Tetrahedron Lett. 2009, 50, 6830-6833.
- 45. So, S. S.; Burkett, J. A.; Mattson, A. E. Org. Lett. 2011, 13, 716-719.
- 46. Schafer, A. G.; Wieting, J. M.; Mattson, A. E. Org. Lett. 2011, 13, 5228-5231.
- 47. Diemoz, K. M.; Hein, J. E.; Wilson, S. O.; Fettinger, J. C.; Franz, A. K. J. Org. Chem. 2017, 82, 6738-6747.
- 48. Gu, Y.; Barrault, J.; Jérôme, F. Adv. Synth. Catal. 2008, 350, 2007-2012.
- 49. Tang, R. J.; Milcent, T.; Crousse, B. RSC Adv. 2018, 8, 10314-10317.