Efficient photodegradation of neutral red chloride dye in aqueous medium using graphene/cobalt-manganese oxides nanocomposite

Efficient photodegradation of neutral red chloride dye in aqueous medium using graphene/cobalt-manganese oxides nanocomposite

Graphene/cobalt manganese oxides nanocomposites were prepared from their precursor through chemical reduction where NaOH was used as a reducing agent. The obtained GNs/Co-Mn nanocomposites were used as photocatalyst for the photodegradation of Neutral Red Chloride (NRC) dye in aqueous solution under sunlight as a function of time and catalyst dosage. The morphology and photodegradation study was carried out using scanning electron microscopy (SEM) and UV-VIS spectrophotometry, respectively. The SEM image showed the presence of Co-Mn nanoparticles on the surface of GNs, which were also confirmed by energy dispersive X-ray analysis. The photodegradation study of NRC showed that the degradation of dye increased with an increase in irradiation time, and 94% of dye was degraded within 5 min by GNs/Co-Mn. Photodegradation was also carried out with recovered catalyst, which degraded about 90% of dye within 5 min. The effect of catalyst dosage on the degradation of dye was also studied.

___

  • 1. Aal, S. E. A. A. E.; Hegazy, E. A.; Taleb, M. F. A.; Dessouki, A. M. J. Appl. Polym. Sci. 2005, 96, 753-763.
  • 2. Lee, J. W.; Choi, S. P.; Thiruvenkatachari, R. Dyes Pigments 2006, 69, 196-203.
  • 3. Saeed, K.; Khan, I.; Sadiq, M. Sep. Sci. Technol. 2015, 54, 3146-3151.
  • 4. International Union of Pure and Applied Chemistry, Glossary of terms used in photochemistry (IUPAC recommendations) Pure and Applied Chemistry; 1996, 68, pp. 2223-2286.
  • 5. Pouretedal, H. R.; Kiyani, M. J. Iran. Chem. Soc. 2014, 11, 271-277.
  • 6. Fox, M. Photocatalytic Oxidation of Organic Substances; Academic Publishers: New York, NY, USA, 1998.
  • 7. Tovar, L. L. G.; Martinez, L. M. T.; Rodriguez, D. B.; Giomez, R.; Angel, G. D. J. Mol. Catal. A: Chem. 2006, 247, 283-290.
  • 8. Kim, B. H.; Hackett, M. J.; Park, J.; Hyeon, T. Chem. Mater. 2013, 26, 59-71.
  • 9. Ban, I.; Stergar, J.; Drofenik, M.; Ferk, G.; Makovec, D. Acta. Chim. Slov. 2013, 60, 750-755.
  • 10. Selvam, G. G.; Sivakumar, K. Appl. Nanosci. 2015, 5, 617-622.
  • 11. Hosseinnia, A.; Keyanpour, R. M.; Pazouki, M. World Appl. Sci. J. 2010, 8, 1327-1332.
  • 12. He, H.; Chao, Gao, C. Sci. China Chem. 2011, 54, 397-404.
  • 13. Marinkas, A.; Arena, F.; Mitzel, J.; Prinz, G. M.; Heinzel, A.; Peinecke, V.; Natter, H. Carbon 2013, 58, 139-150.
  • 14. Lee, J.; Kim, I.; Cho, D.; Youn, J.; Kim, Y.; Oh, H. Carbon Lett. 2015, 16, 247-254.
  • 15. Liu, X. H.; Deng, Y.; Zhou, Y. H.; Xia, L.; Ding, L. L.; Zhang, Y. C. World J. Nuclear Sci. Technol. 2012, 2, 133-137.
  • 16. Fotakis, G.; Timbrell, J. A. Toxicol. Lett. 2006, 160, 171-177.
  • 17. Oh, W. C.; Chen, M.; Cho, K.; Kim, C.; Meng, Z.; Zhu, L. Chin. J. Catal. 2011, 32, 1577-1583.
  • 18. Wang, W.; Yu, J.; Xiang, Q.; Cheng, B. Appl. Catal. B: Environ. 2012, 119-120, 109-116.
  • 19. Ong, S. T.; Cheong, W. S.; Hung, Y. T. 4th International Conference on Chemical, Biological and Environmental Engineering, 2012, 43, pp. 109-113.
  • 20. Saeed, K.; Khan, I.; Park, S. Y. Desalin. Water Treat. 2015, 54, 3146-3151.