Determination of Ni(II) with picolinaldehyde-4-phenyl-3-thiosemicarbazone used as a chromogenic reagent in a nonionic micellar system

Spectrophotometric determination of Ni(II) was carried out using picolinaldehyde-4-phenyl-3-thiosemicarbazone (PAPT) as a complexing/chromogenic reagent. The possibility of using a micellar system was explored to enhance the degree of detection and allow a more sensitive spectrophotometric method for the determination of nickel ions. The anionic surfactant Triton X-100 greatly enhanced the molar absorptivity and limit of detection relative to that observed with bulk water or an organic solvent. The linear calibration graphs were obtained for 0.5-2.0 mg L-1 and 0.001-1.0 mg L-1 of Ni(II) in aqueous and surfactant media, respectively. Using this approach, the limit of detection for the PAPT-Ni(II) complex (based on 3 s of blank absorbance/slope) was found to be 0.0008 mg L-1 with a micellar enhancement reagent. The interference from over 50 cations, anions, and complexing agents was studied at 0.50 mg L-1 of Ni(II); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions.

Determination of Ni(II) with picolinaldehyde-4-phenyl-3-thiosemicarbazone used as a chromogenic reagent in a nonionic micellar system

Spectrophotometric determination of Ni(II) was carried out using picolinaldehyde-4-phenyl-3-thiosemicarbazone (PAPT) as a complexing/chromogenic reagent. The possibility of using a micellar system was explored to enhance the degree of detection and allow a more sensitive spectrophotometric method for the determination of nickel ions. The anionic surfactant Triton X-100 greatly enhanced the molar absorptivity and limit of detection relative to that observed with bulk water or an organic solvent. The linear calibration graphs were obtained for 0.5-2.0 mg L-1 and 0.001-1.0 mg L-1 of Ni(II) in aqueous and surfactant media, respectively. Using this approach, the limit of detection for the PAPT-Ni(II) complex (based on 3 s of blank absorbance/slope) was found to be 0.0008 mg L-1 with a micellar enhancement reagent. The interference from over 50 cations, anions, and complexing agents was studied at 0.50 mg L-1 of Ni(II); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions.

___

  • solution not only serves to remove the need for organic solvents but also enhances the analytical signal and
  • consequently the sensitivity of method. With the use of a micellar system, less of the PAPT chelating reagent is
  • required. The method is applicable to complex matrices and serves as a single-step, quick method that requires
  • no clean-up process for interfering ions.
  • Vercruysse, A. Hazardous Metals in Human Toxicology, Part B, Elsevier, New York, NY, 1984.
  • White, M. A.; Boran, A. M. Atom Spectrosc. 1989, 10, 141-143.
  • Tandon, S. K.; Khandelwal, S.; Jain, V. K.; Mathur, N. Sci. Total Environ. 1994, 148, 167-173.
  • Scansetti, G.; Maina, G.; Botta, G. C. International Archives of Occupational and Environmental Health 1998, 71, 60-63.
  • Vienna, A.; Capucci, E.; Wolfsperger, M.; Hauser, G. Anthropolgischer Anzeiger 1995, 53, 27-32.
  • Denkhaus, E.; Salnikow, K. Crit. Rev. Oncology/Hematology 2002, 42, 35-56.
  • Gonzalez, M.; Gallego, M.; Valcarcel, M. Talanta 1999, 48, 1051-1060.
  • Zendelovska, D.; Pavlovska, G.; Cundeva, K.; StaŞlov, T. Talanta 2001, 54, 139-146.
  • Vereda, A. E.; Sanchez, R. F.; Chakrabarti, A. K.; Garcia de Torres, A.; Cano Pavon, J. M. Fresenius’ J. Anal.
  • Chem. 1991, 340, 262-264.
  • Xiaohu, L.; Minggang, L.; Guiwen, Z. Toxicol. Environ. Chem. 1993, 38, 73-79.
  • Bijoli, K. P.; Singh, K. A.; Dipankar, C. Mikrochim. Acta 1997, 126, 39-44.
  • E. B. Sandell, Colorimetric Determination of Traces of Metals, Interscience Publishers, New York, NY, 1959.
  • Gomaz Ariza, J. L.; Cano Pavon, J. M. Anal. Lett. 1976, 9, 677-686.
  • Gomaz Ariza, J. L.; Cano Pavon, J. M.; Pino, F. Talanta 1976, 23, 460-462.
  • Balouch, A.; Memon, N.; Bhanger, M. I.; Khuhawar, M. Y. J. AOAC Intl. 2009, 92, 248-256.
  • Gomaz Ariza, J. L.; Cano Pavon, J. M.; Pino, F. AŞnidad (Affinity: Journal of Theoretical and Applied Chemistry) 1977, 34, 363-367.
  • Uehara, N.; Morimoto, K.; Shijo, Y. Analyst 1992, 117, 977-979.
  • Agency for Toxic Substances and Disease Registry, Toxicology ProŞle for Carbon Tetrachloride, Public Health Service, Atlanta, GA, 1994.
  • US Environmental Protection Agency, Proposed Guidelines for Carcinogenic Risk Assessment, Office of Research and Development, NCEA-F-0644, EPA, Washington, DC, 1999.
  • Malik, A. K.; Kaul, K. N.; Lark, B. S.; Faubel, W.; Rao, A. L. J. Turk. J. Chem. 2001, 25, 99-105.
  • Eskandari, H. Bull. Korean Chem. Soc. 2004, 25, 1137-1142.
  • Memon, N.; Balouch, A.; Hinze, W. L. In Encyclopedia of Analytical Chemistry; Meyers, R. A., Ed.; John Wiley & Sons, Ltd., London, 2008.
  • Memon, N.; Bhanger, M. I. Acta Chromatogr. 2004, 14, 172-179.
  • Shar, G. A.; Soomro, G. A. The Nucleus 2004, 41, 77-82.
  • Tagashira, S.; Fujiwara, I.; Murakami, Y.; Kubo, S.; Sasaki, Y.; Nakai, T. Solvent Extr. Res. Devlop. Jpn. 2005, 12, 113-122.
  • G.M. Mastoi, Analysis of Water and Development of New Analytical Methods for the Determination of Metals and Non-Metal Ions, PhD dissertation, University of Sindh, Jamshoro, Pakistan, 2001.
  • Fan, X. Z.; Zhu, C. H.; Zhang, G. F. Analyst 1998, 123, 109-112.
  • Fan, X. Z.; Zhu, C. H. Microchem. J. 1998, 59, 284-293.
  • Zhao, S. L.; Xia, X. Q.; Ma, H. R.; Xi, H. J. Talanta 1994, 41, 1353-1356.
  • Ohshita, K.; Wada, H.; Nakagawa, G. Anal. Chim. Acta 1982, 140, 291-300.
  • Hu, Q. F.; Yang, G. Y.; Huang, Z. J.; Yin, J. Y. Anal. Sci. 2003, 19, 1449-1452.
  • Job, P. Ann. Chim. (Paris) 1928, 9, 113-203.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis and antimicrobial activity of novel 2-(pyridin-2-yl)thieno[2,3-d]pyrimidin-4 (3H)-ones

Nitin G. HASWANI, Sanjaykumar B. BARI

Facile and convenient synthesis of pyrimidine, 4H-3,1-benzoxazin-4-one, pyrazolo[5,1-b]quinazoline, pyrido[1,2-a]quinazoline, and chromeno[3' ,4' :4,5]pyrido[1,2-a]quinazoline derivatives

Yossry A. AMMAR, Samir BONDOCK, Abdallah G. AL-SEHEMI

Power of inhibition activity screening and 3D molecular modeling approaches in HDAC 8 inhibitor design

Gamze BORA TATAR, Tenzile Deniz TOKLUMAN, Kemal YELEKÇİ

Determination of Ni(II) with picolinaldehyde-4-phenyl-3-thiosemicarbazone used as a chromogenic reagent in a nonionic micellar system

Aamna BALOUCH, Muhammad Iqbal BHANGER, Farah Naz TALPUR

Synthesis, characterization, and photoluminescence properties of Cu(II), Co(II), Ni(II), and Zn(II) complexes of N-aminopyrimidine-2-thione

Zülbiye ÖNAL, Hüseyin ZENGİN, Mehmet SÖNMEZ

Arsenic and antimony determination in refined and unrefined table salts by means of hydride generation atomic absorption spectrometry–comparison of sample decomposition and determination methods

Nur AKSUNER, Vedia Nüket TİRTOM, Emür HENDEN

Facile and convenient synthesis of pyrimidine, 4H-3,1-benzoxazin-4-one, pyrazolo[5,1-b]quinazoline, pyrido[1,2-a]quinazoline, and chromeno[3',4 ' :4,5]pyrido[1,2-a]quinazoline derivatives

Ahmed M. FOUDA, Yossry A. AMMAR, Abdallah G. AL SEHEMI, Mohamed S. A. El GABY, Hamdy Kh. THABET, Samir BONDOCK

Chemistry of 2-aminothiophene-3-carboxamide and related compounds

Moustafa A. GOUDA, Moged A. BERGHOT, Ghada E. ABD EL-GHANI

Amphiphilic and chiral unsymmetrical perylene dye for solid-state dye-sensitized solar cells

Hurmus REFIKER, Hüriye İCİL

Synthesis and structural analysis of a regular Cu-Mg-Al hydrotalcite-like compound

Jian-Song WU, Ying-Kai XIAO, Yu-Ping LIU, Wan-Bang XU