Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties

The 4-(2[3,4-dimethoxyphenoxy] phenoxy) phthalonitrile was synthesized as the starting material of new syntheses. Zinc, copper, and cobalt phthalocyanines were achieved by reaction of starting compound with Zn(CH3 COO)(2), CuCl2, and CoCl2 metal salts. Basic spectroscopic methods such as nuclear magnetic resonance electronic absorption, mass and infrared spectrometry were used in the structural characterization of the compounds. Absorption, excitation, and emission measurements of the fluorescence zinc phthalocyanine compound were also investigated in THE. Then, structural, energy, and electronic properties for synthesized metallophthalocyanines were determined by quantum chemical calculations, including the DFT method. The bandgap of HOMO and LUMO was determined to be chemically active. Global reactivity (I, A, eta, s, mu, chi, omega) and nonlinear properties were studied. In addition, molecular electrostatic potential (MEP) maps were drawn to identify potential reactive regions of metallophthalocyanine (M-Pc) compounds. Photovoltaic performances of phthalocyanine compounds for dye sensitive solar cells were investigated. The solar conversion efficiency of DSSC based on copper, zinc, and cobalt phthalocyanine compounds was 1.69%, 1.35%, and 1.54%, respectively. The compounds have good solubility and show nonlinear optical properties. Zinc phthalocyanine gave fluorescence emission.

___

  • Afshari R, 2019, DYES PIGMENTS, V166, P49, DOI 10.1016/j.dyepig.2019.03.018
  • Agirtas MS, 2008, DYES PIGMENTS, V79, P247, DOI 10.1016/j.dyepig.2008.03.004
  • Agirtas MS, 2007, INORG CHIM ACTA, V360, P2499, DOI 10.1016/j.ica.2006.12.029
  • Agirtas MS, 2014, SYNTHETIC MET, V195, P177, DOI 10.1016/j.synthmet.2014.06.004
  • Agirtas MS, 2013, DYES PIGMENTS, V96, P152, DOI 10.1016/j.dyepig.2012.07.023
  • Agirtas MS, 2018, CHEMISTRYSELECT, V3, P3523, DOI 10.1002/slct.201703122
  • Ali HEA, 2016, DYES PIGMENTS, V124, P180, DOI 10.1016/j.dyepig.2015.09.010
  • Attia MS, 2019, TALANTA, V201, P185, DOI 10.1016/j.talanta.2019.03.119
  • Barim E, 2019, J MOL STRUCT, V1195, P506, DOI 10.1016/j.molstruc.2019.06.015
  • Basova TV, 2016, SENSOR ACTUAT B-CHEM, V227, P634, DOI 10.1016/j.snb.2015.12.079
  • Becker HGO, 1978, ADV SYNTH CATAL, V320, P879
  • Bignozzi CA, 2013, COORDIN CHEM REV, V257, P1472, DOI 10.1016/j.ccr.2012.09.008
  • Braik M, 2015, SYNTHETIC MET, V209, P135, DOI 10.1016/j.synthmet.2015.07.011
  • Cabir B, 2017, J MOL STRUCT, V1142, P194, DOI 10.1016/j.molstruc.2017.04.060
  • Demirol M, 2020, J MOL STRUCT, V1219, DOI 10.1016/j.molstruc.2020.128571
  • Frisch G.W., 2016, GAUSSIAN 09 REVISION .
  • Grobosch M, 2010, ORG ELECTRON, V11, P1483, DOI 10.1016/j.orgel.2010.06.006
  • Guzel E, 2013, DYES PIGMENTS, V97, P238, DOI 10.1016/j.dyepig.2012.12.027
  • Hagen JP, 2001, THIN SOLID FILMS, V398, P104, DOI 10.1016/S0040-6090(01)01310-4
  • Huang HY, 2012, SYNTHETIC MET, V162, P2316, DOI 10.1016/j.synthmet.2012.11.007
  • Kanagathara N, 2021, J MOL STRUCT, V1223, DOI 10.1016/j.molstruc.2020.128965
  • Karaoglan GK, 2017, SYNTHETIC MET, V230, P7, DOI 10.1016/j.synthmet.2017.04.019
  • Kheirjou S, 2016, CR CHIM, V19, P314, DOI 10.1016/j.crci.2015.11.014
  • Khezami K, 2020, J PHOTOCH PHOTOBIO A, V401, DOI 10.1016/j.jphotochem.2020.112736
  • Komori T, 2003, J PORPHYR PHTHALOCYA, V7, P131, DOI 10.1142/S1088424603000185
  • Kong SW, 2019, J MOL LIQ, V288, DOI 10.1016/j.molliq.2019.111012
  • Kumar VK, 2014, SPECTROCHIM ACTA A, V118, P663, DOI 10.1016/j.saa.2013.08.089
  • Lapshina M, 2020, J PHOTOCH PHOTOBIO B, V202, DOI 10.1016/j.jphotobiol.2019.111722
  • Lin KC, 2014, SOL ENERG MAT SOL C, V126, P155, DOI 10.1016/j.solmat.2014.03.025
  • Liu SN, 2017, CHEM PHYS LETT, V684, P321, DOI 10.1016/j.cplett.2017.07.001
  • Liu TM, 2017, PROG MATER SCI, V88, P89, DOI 10.1016/j.pmatsci.2017.03.004
  • Mantareva V, 2011, EUR J MED CHEM, V46, P4430, DOI 10.1016/j.ejmech.2011.07.015
  • Mathew S, 2014, NAT CHEM, V6, P242, DOI [10.1038/NCHEM.1861, 10.1038/nchem.1861]
  • McRae EKS, 2019, J INORG BIOCHEM, V199, DOI 10.1016/j.jinorgbio.2019.110793
  • Mumit MA, 2020, J MOL STRUCT, V1220, DOI 10.1016/j.molstruc.2020.128715
  • Ogunsipe A, 2003, J MOL STRUCT, V650, P131, DOI 10.1016/S0022-2860(03)00155-8
  • Prabhaharan M, 2015, SPECTROCHIM ACTA A, V136, P494, DOI 10.1016/j.saa.2014.09.062
  • Roguin LP, 2019, INT J BIOCHEM CELL B, V114, DOI 10.1016/j.biocel.2019.105575
  • Savelyev MS, 2019, OPT LASER TECHNOL, V117, P272, DOI 10.1016/j.optlastec.2019.04.036
  • Sen P, 2018, J LUMIN, V194, P123, DOI 10.1016/j.jlumin.2017.10.022
  • Sfyri G, 2016, SOL ENERGY, V140, P60, DOI 10.1016/j.solener.2016.10.050
  • Shehab OR, 2021, J MOL STRUCT, V1223, DOI 10.1016/j.molstruc.2020.128996
  • Siddiqui N, J MOL STRUCTURE, V1224 .
  • Singh S, 2020, BIOORGAN MED CHEM, V28, DOI 10.1016/j.bmc.2019.115259
  • Sodeifian G, 2019, FLUID PHASE EQUILIBR, V494, P61, DOI 10.1016/j.fluid.2019.04.024
  • Solgun DG, 2018, INORG NANO-MET CHEM, V48, P508, DOI 10.1080/24701556.2019.1572624
  • Urbani M, 2019, COORDIN CHEM REV, V381, P1, DOI 10.1016/j.ccr.2018.10.007
  • Wong RCH, 2019, COORDIN CHEM REV, V379, P30, DOI 10.1016/j.ccr.2017.10.006
  • Yin S, 2019, COLLOID SURFACE A, V575, P336, DOI 10.1016/j.colsurfa.2019.05.028
  • Zhong L, 2018, ORG ELECTRON, V62, P89, DOI 10.1016/j.orgel.2018.07.010